Sunil Surendra Singh
Added streamlit and pymongo
a35dac3
raw
history blame
2.63 kB
"""App agnostic reusable utility functionality"""
from config import app_config
import streamlit as st
# import s3fs
def setup_app(config):
"""Sets up all application icon, banner, title"""
st.set_page_config(
page_title=config.app_title,
page_icon=app_config.app_icon,
initial_sidebar_state=config.sidebar_state,
layout=config.layout,
)
### Logo and App title, description
with st.container():
app_icon_title, title, logo = st.columns([0.4, 0.6, 0.3])
app_icon_title.image(image=app_config.app_icon, width=200)
title.markdown(
f"<h1 style='text-align: left; color: #03989e;'>{app_config.app_title}</h1> ",
unsafe_allow_html=True,
)
title.markdown(
f"<p style='text-align: left;'>{app_config.app_short_desc}</p>",
unsafe_allow_html=True,
)
logo.image(image=app_config.logo_image)
# st.divider()
def create_tabs(tabs):
"""Creates streamlit tabs"""
return st.tabs(tabs)
def download_file(btn_label, data, file_name, mime_type):
"""Creates a download button for data download"""
st.download_button(label=btn_label, data=data, file_name=file_name, mime=mime_type)
def get_class_from_name(module: str, class_name: str):
"""Instantiates and return the class given the class name and its module as str"""
return getattr(module, class_name)
# def make_prediction(model, input_data, proba=False):
# """
# prediction pipeline for the model, model must have predict method and predict_proba
# method if prediction probabilities to be returned
# """
# ### preprocess the input and return it in a shape suitable for this model
# processed_input_data = data.preprocess_pred_data(input_data)
# ### call model's predict method
# pred = model.predict(processed_input_data)
# ### call model's predict_proba method if required
# pred_proba = []
# if proba:
# pred_proba = model.predict_proba(processed_input_data)
# return pred, pred_proba.squeeze()
# def download_from_s3(source_s3_uri, target_file):
# """connect to S3 and download file"""
# with st.spinner(
# f"Downloading trained model it may take few minutes, please be patient..."
# ):
# fs = s3fs.S3FileSystem(
# key=st.secrets["AWS_ACCESS_KEY"], secret=st.secrets["AWS_ACCESS_SECRET"]
# )
# fs.download(source_s3_uri, target_file)
def read(file) -> str:
"""read the text file and return the contents"""
with open(file, "r") as f:
text = f.read()
return text