"""App agnostic reusable utility functionality""" from config import app_config import streamlit as st import s3fs def setup_app(config): """Sets up all application icon, banner, title""" st.set_page_config( page_title=config.app_title, page_icon=app_config.app_icon, initial_sidebar_state=config.sidebar_state, layout=config.layout, ) ### Logo and App title, description with st.container(): app_icon_title, title, logo = st.columns([0.4, 0.6, 0.3]) app_icon_title.image(image=app_config.app_icon, width=200) title.markdown( f"
{app_config.app_short_desc}
", unsafe_allow_html=True, ) logo.image(image=app_config.logo_image) # st.divider() def create_tabs(tabs): """Creates streamlit tabs""" return st.tabs(tabs) def download_file(btn_label, data, file_name, mime_type): """Creates a download button for data download""" st.download_button(label=btn_label, data=data, file_name=file_name, mime=mime_type) def get_class_from_name(module: str, class_name: str): """Instantiates and return the class given the class name and its module as str""" return getattr(module, class_name) # def make_prediction(model, input_data, proba=False): # """ # prediction pipeline for the model, model must have predict method and predict_proba # method if prediction probabilities to be returned # """ # ### preprocess the input and return it in a shape suitable for this model # processed_input_data = data.preprocess_pred_data(input_data) # ### call model's predict method # pred = model.predict(processed_input_data) # ### call model's predict_proba method if required # pred_proba = [] # if proba: # pred_proba = model.predict_proba(processed_input_data) # return pred, pred_proba.squeeze() def download_from_s3(source_s3_uri, target_file): """connect to S3 and download file""" with st.spinner( f"Downloading trained model it may take few minutes, please be patient..." ): fs = s3fs.S3FileSystem( key=st.secrets["AWS_ACCESS_KEY"], secret=st.secrets["AWS_ACCESS_SECRET"] ) fs.download(source_s3_uri, target_file) def read(file) -> str: """read the text file and return the contents""" with open(file, "r") as f: text = f.read() return text