File size: 14,666 Bytes
797142e
 
12e6773
797142e
12e6773
 
 
80de021
 
797142e
12e6773
797142e
0704a28
12e6773
5181cd5
12e6773
51b6984
12e6773
 
 
57cd102
 
12e6773
 
 
 
542d571
51b6984
12e6773
 
80de021
 
 
 
 
 
3454951
797142e
 
a1c2ce2
 
 
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b028a73
 
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
51b6984
797142e
 
 
 
 
 
51b6984
 
5181cd5
797142e
 
 
 
 
 
 
51b6984
 
797142e
 
 
51b6984
 
797142e
 
 
51b6984
 
797142e
 
 
51b6984
 
797142e
 
 
51b6984
 
797142e
 
 
12e6773
797142e
 
 
5181cd5
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc40be
51b6984
797142e
 
5181cd5
51b6984
797142e
 
 
 
 
 
e6c770e
797142e
 
 
 
 
30a52e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797142e
 
 
80de021
797142e
12e6773
 
b028a73
 
 
 
 
51b6984
12e6773
 
 
51b6984
 
 
12e6773
 
 
 
 
 
 
 
51b6984
797142e
88651d7
 
 
797142e
12e6773
 
 
 
 
 
 
 
 
 
797142e
 
 
 
 
 
 
 
 
12e6773
797142e
 
c423b51
 
 
 
 
797142e
67a9c3e
797142e
 
 
c423b51
 
797142e
548116b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import gradio as gr
from datasets import load_dataset
from PIL import Image  

import re
import os
import requests
import uuid
import base64 

from share_btn import community_icon_html, loading_icon_html, share_js

word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt")
word_list = word_list_dataset["train"]['text']

is_gpu_busy = False
def infer(prompt, negative, scale):
    global is_gpu_busy
    for filter in word_list:
        if re.search(rf"\b{filter}\b", prompt):
            print(filter)
            print(prompt)
            raise gr.Error("Unsafe content found. Please try again with different prompts.")
        
    images = []
    url = os.getenv('JAX_BACKEND_URL')
    print(url)
    payload = {'prompt': prompt, 'negative_prompt': negative, 'guidance_scale': scale}
    images_request = requests.post(url, json = payload)
    for image in images_request.json()["images"]:
        file_path = f"{uuid.uuid4()}.jpg"
        with open(file_path, "wb") as f:
            f.write(base64.b64decode(image))
        images.append(file_path)
    
    return images 
    
    
css = """
        .gradio-container {
            max-width: 768px !important;
        }
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
"""

block = gr.Blocks(css=css)

examples = [
    [
        'A high tech solarpunk utopia in the Amazon rainforest',
        'low quality',
        9
    ],
    [
        'A pikachu fine dining with a view to the Eiffel Tower',
        'low quality',
        9
    ],
    [
        'A mecha robot in a favela in expressionist style',
        'low quality, 3d, photorealistic',
        9
    ],
    [
        'an insect robot preparing a delicious meal',
        'low quality, illustration',
        9
    ],
    [
        "A small cabin on top of a snowy mountain in the style of Disney, artstation",
        'low quality, ugly',
        9
    ],
]


with block:
    gr.HTML(
        """
            <div style="text-align: center; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <svg
                  width="0.65em"
                  height="0.65em"
                  viewBox="0 0 115 115"
                  fill="none"
                  xmlns="http://www.w3.org/2000/svg"
                >
                  <rect width="23" height="23" fill="white"></rect>
                  <rect y="69" width="23" height="23" fill="white"></rect>
                  <rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="46" width="23" height="23" fill="white"></rect>
                  <rect x="46" y="69" width="23" height="23" fill="white"></rect>
                  <rect x="69" width="23" height="23" fill="black"></rect>
                  <rect x="69" y="69" width="23" height="23" fill="black"></rect>
                  <rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="115" y="46" width="23" height="23" fill="white"></rect>
                  <rect x="115" y="115" width="23" height="23" fill="white"></rect>
                  <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="92" y="69" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="46" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="115" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="46" y="46" width="23" height="23" fill="black"></rect>
                  <rect x="46" y="115" width="23" height="23" fill="black"></rect>
                  <rect x="46" y="69" width="23" height="23" fill="black"></rect>
                  <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="23" y="69" width="23" height="23" fill="black"></rect>
                </svg>
                <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
                  Stable Diffusion 2.1 Demo
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
                Stable Diffusion 2.1 is the latest text-to-image model from StabilityAI. <a style="text-decoration: underline;" href="https://huggingface.co/spaces/stabilityai/stable-diffusion-1">Access Stable Diffusion 1 Space here</a><br>For faster generation and API
                access you can try
                <a
                  href="http://beta.dreamstudio.ai/"
                  style="text-decoration: underline;"
                  target="_blank"
                  >DreamStudio Beta</a
                >.</a>
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Row(elem_id="prompt-container"):
            with gr.Column(scale=3):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    elem_id="prompt-text-input",
                )
                negative = gr.Textbox(
                    label="Enter your negative prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    elem_id="negative-prompt-text-input",
                )
            with gr.Column(scale=1):
                btn = gr.Button("Generate image")

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        )

        with gr.Group(elem_id="container-advanced-btns"):
            #advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
            with gr.Group(elem_id="share-btn-container"):
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")

        with gr.Accordion("Advanced settings", open=False):
        #    gr.Markdown("Advanced settings are temporarily unavailable")
        #    samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
        #    steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
             guidance_scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=50, value=9, step=0.1
             )
        #    seed = gr.Slider(
        #        label="Seed",
        #        minimum=0,
        #        maximum=2147483647,
        #        step=1,
        #        randomize=True,
        #    )

        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, negative, guidance_scale], outputs=[gallery, community_icon, loading_icon, share_button], cache_examples=False)
        ex.dataset.headers = [""]
        negative.submit(infer, inputs=[text, negative, guidance_scale], outputs=[gallery])
        text.submit(infer, inputs=[text, negative, guidance_scale], outputs=[gallery])
        btn.click(infer, inputs=[text, negative, guidance_scale], outputs=[gallery])
        
        #advanced_button.click(
        #    None,
        #    [],
        #    text,
        #    _js="""
        #    () => {
        #        const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
        #        options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
        #    }""",
        #)
        share_button.click(
            None,
            [],
            [],
            _js=share_js,
        )
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">StabilityAI</a> - backend running JAX on TPUs due to generous support of <a href="https://sites.research.google/trc/about/" style="text-decoration: underline;" target="_blank">Google TRC program</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
                </div>
           """
        )
        with gr.Accordion(label="License", open=False):
            gr.HTML(
                """<div class="acknowledgments">
                    <p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL" style="text-decoration: underline;" target="_blank">CreativeML OpenRAIL++</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                    <p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
               </div>
                """
            )

block.queue(concurrency_count=80, max_size=100).launch(max_threads=150, show_error=True)