File size: 3,424 Bytes
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn as nn
import numpy as np
from functools import partial

from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
from ldm.util import default


class AbstractLowScaleModel(nn.Module):
    # for concatenating a downsampled image to the latent representation
    def __init__(self, noise_schedule_config=None):
        super(AbstractLowScaleModel, self).__init__()
        if noise_schedule_config is not None:
            self.register_schedule(**noise_schedule_config)

    def register_schedule(self, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
                                   cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)

    def forward(self, x):
        return x, None

    def decode(self, x):
        return x


class SimpleImageConcat(AbstractLowScaleModel):
    # no noise level conditioning
    def __init__(self):
        super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
        self.max_noise_level = 0

    def forward(self, x):
        # fix to constant noise level
        return x, torch.zeros(x.shape[0], device=x.device).long()


class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
    def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
        super().__init__(noise_schedule_config=noise_schedule_config)
        self.max_noise_level = max_noise_level

    def forward(self, x, noise_level=None):
        if noise_level is None:
            noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
        else:
            assert isinstance(noise_level, torch.Tensor)
        z = self.q_sample(x, noise_level)
        return z, noise_level