import gradio as gr import cv2 import torch from imwatermark import WatermarkEncoder import numpy as np from PIL import Image import re from datasets import load_dataset from diffusers import DiffusionPipeline, EulerDiscreteScheduler from share_btn import community_icon_html, loading_icon_html, share_js REPO_ID = "stabilityai/stable-diffusion-2" device = "cuda" if torch.cuda.is_available() else "cpu" wm = "SDV2" wm_encoder = WatermarkEncoder() wm_encoder.set_watermark('bytes', wm.encode('utf-8')) def put_watermark(img, wm_encoder=None): if wm_encoder is not None: img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img = wm_encoder.encode(img, 'dwtDct') img = Image.fromarray(img[:, :, ::-1]) return img repo_id = "stabilityai/stable-diffusion-2" scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler", prediction_type="v_prediction") pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16", scheduler=scheduler) pipe = pipe.to(device) pipe.enable_xformers_memory_efficient_attention() #If you have duplicated this Space or is running locally, you can remove this snippet if "HUGGING_FACE_HUB_TOKEN" in os.environ: word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True) word_list = word_list_dataset["train"]['text'] def infer(prompt, samples, steps, scale, seed): #If you have duplicated this Space or is running locally, you can remove this snippet if "HUGGING_FACE_HUB_TOKEN" in os.environ: for filter in word_list: if re.search(rf"\b{filter}\b", prompt): raise gr.Error("Unsafe content found. Please try again with different prompts.") generator = torch.Generator(device=device).manual_seed(seed) images = pipe(prompt, width=768, height=768, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=samples, generator=generator).images images_watermarked = [] for image in images: image = put_watermark(image, wm_encoder) images_watermarked.append(image) return images_watermarked css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #component-9{margin-top: -19px} .image_duplication{position: absolute; width: 100px; left: 50px} """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', 4, 25, 9, 1024, ], [ 'A pikachu fine dining with a view to the Eiffel Tower', 4, 25, 9, 1024, ], [ 'A mecha robot in a favela in expressionist style', 4, 25, 9, 1024, ], [ 'an insect robot preparing a delicious meal', 4, 25, 9, 1024, ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 4, 25, 9, 1024, ], ] with block: gr.HTML( """
Stable Diffusion 2 is the latest text-to-image model from StabilityAI. Access Stable Diffusion 1 Space here
For faster generation and API
access you can try
DreamStudio Beta.