import gradio as gr #import torch #from torch import autocast #from diffusers import StableDiffusionPipeline from datasets import load_dataset from PIL import Image #from io import BytesIO #import base64 import re import os import requests from share_btn import community_icon_html, loading_icon_html, share_js model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" #If you are running this code locally, you need to either do a 'huggingface-cli login` or paste your User Access Token from here https://huggingface.co/settings/tokens into the use_auth_token field below. #pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16) #pipe = pipe.to(device) #torch.backends.cudnn.benchmark = True #When running locally, you won`t have access to this, so you can remove this part word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True) word_list = word_list_dataset["train"]['text'] is_gpu_busy = False def infer(prompt): global is_gpu_busy samples = 4 steps = 50 scale = 7.5 #When running locally you can also remove this filter for filter in word_list: if re.search(rf"\b{filter}\b", prompt): raise gr.Error("Unsafe content found. Please try again with different prompts.") #generator = torch.Generator(device=device).manual_seed(seed) #print("Is GPU busy? ", is_gpu_busy) images = [] #if(not is_gpu_busy): # is_gpu_busy = True # images_list = pipe( # [prompt] * samples, # num_inference_steps=steps, # guidance_scale=scale, #generator=generator, # ) # is_gpu_busy = False # safe_image = Image.open(r"unsafe.png") # for i, image in enumerate(images_list["sample"]): # if(images_list["nsfw_content_detected"][i]): # images.append(safe_image) # else: # images.append(image) #else: url = os.getenv('JAX_BACKEND_URL') payload = {'prompt': prompt} images_request = requests.post(url, json = payload) for image in images_request.json()["images"]: image_b64 = (f"data:image/png;base64,{image}") images.append(image_b64) return images css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', # 4, # 45, # 7.5, # 1024, ], [ 'A pikachu fine dining with a view to the Eiffel Tower', # 4, # 45, # 7, # 1024, ], [ 'A mecha robot in a favela in expressionist style', # 4, # 45, # 7, # 1024, ], [ 'an insect robot preparing a delicious meal', # 4, # 45, # 7, # 1024, ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", # 4, # 45, # 7, # 1024, ], ] with block: gr.HTML( """
Stable Diffusion is a state of the art text-to-image model that generates
images from text.
For faster generation and forthcoming API
access you can try
DreamStudio Beta