Spaces:
Running
on
L4
Running
on
L4
import os | |
import slangtorch | |
import torch | |
import torch.nn as nn | |
from jaxtyping import Bool, Float | |
from torch import Tensor | |
class TextureBaker(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.baker = slangtorch.loadModule( | |
os.path.join(os.path.dirname(__file__), "texture_baker.slang") | |
) | |
def rasterize( | |
self, | |
uv: Float[Tensor, "Nv 2"], | |
face_indices: Float[Tensor, "Nf 3"], | |
bake_resolution: int, | |
) -> Float[Tensor, "bake_resolution bake_resolution 4"]: | |
if not face_indices.is_cuda or not uv.is_cuda: | |
raise ValueError("All input tensors must be on cuda") | |
face_indices = face_indices.to(torch.int32) | |
uv = uv.to(torch.float32) | |
rast_result = torch.empty( | |
bake_resolution, bake_resolution, 4, device=uv.device, dtype=torch.float32 | |
) | |
block_size = 16 | |
grid_size = bake_resolution // block_size | |
self.baker.bake_uv(uv=uv, indices=face_indices, output=rast_result).launchRaw( | |
blockSize=(block_size, block_size, 1), gridSize=(grid_size, grid_size, 1) | |
) | |
return rast_result | |
def get_mask( | |
self, rast: Float[Tensor, "bake_resolution bake_resolution 4"] | |
) -> Bool[Tensor, "bake_resolution bake_resolution"]: | |
return rast[..., -1] >= 0 | |
def interpolate( | |
self, | |
attr: Float[Tensor, "Nv 3"], | |
rast: Float[Tensor, "bake_resolution bake_resolution 4"], | |
face_indices: Float[Tensor, "Nf 3"], | |
uv: Float[Tensor, "Nv 2"], | |
) -> Float[Tensor, "bake_resolution bake_resolution 3"]: | |
# Make sure all input tensors are on torch | |
if not attr.is_cuda or not face_indices.is_cuda or not rast.is_cuda: | |
raise ValueError("All input tensors must be on cuda") | |
attr = attr.to(torch.float32) | |
face_indices = face_indices.to(torch.int32) | |
uv = uv.to(torch.float32) | |
pos_bake = torch.zeros( | |
rast.shape[0], | |
rast.shape[1], | |
3, | |
device=attr.device, | |
dtype=attr.dtype, | |
) | |
block_size = 16 | |
grid_size = rast.shape[0] // block_size | |
self.baker.interpolate( | |
attr=attr, indices=face_indices, rast=rast, output=pos_bake | |
).launchRaw( | |
blockSize=(block_size, block_size, 1), gridSize=(grid_size, grid_size, 1) | |
) | |
return pos_bake | |
def forward( | |
self, | |
attr: Float[Tensor, "Nv 3"], | |
uv: Float[Tensor, "Nv 2"], | |
face_indices: Float[Tensor, "Nf 3"], | |
bake_resolution: int, | |
) -> Float[Tensor, "bake_resolution bake_resolution 3"]: | |
rast = self.rasterize(uv, face_indices, bake_resolution) | |
return self.interpolate(attr, rast, face_indices, uv) | |