import os from typing import Any, Union import numpy as np import rembg import torch import torchvision.transforms.functional as torchvision_F from PIL import Image import sf3d.models.utils as sf3d_utils def get_device(): if os.environ.get("SF3D_USE_CPU", "0") == "1": return "cpu" device = "cpu" if torch.cuda.is_available(): device = "cuda" elif torch.backends.mps.is_available(): device = "mps" return device def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int): intrinsic = sf3d_utils.get_intrinsic_from_fov( np.deg2rad(fov_deg), H=cond_height, W=cond_width, ) intrinsic_normed_cond = intrinsic.clone() intrinsic_normed_cond[..., 0, 2] /= cond_width intrinsic_normed_cond[..., 1, 2] /= cond_height intrinsic_normed_cond[..., 0, 0] /= cond_width intrinsic_normed_cond[..., 1, 1] /= cond_height return intrinsic, intrinsic_normed_cond def default_cond_c2w(distance: float): c2w_cond = torch.as_tensor( [ [0, 0, 1, distance], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], ] ).float() return c2w_cond def remove_background( image: Image, rembg_session: Any = None, force: bool = False, **rembg_kwargs, ) -> Image: do_remove = True if image.mode == "RGBA" and image.getextrema()[3][0] < 255: do_remove = False do_remove = do_remove or force if do_remove: image = rembg.remove(image, session=rembg_session, **rembg_kwargs) return image def get_1d_bounds(arr): nz = np.flatnonzero(arr) return nz[0], nz[-1] def get_bbox_from_mask(mask, thr=0.5): masks_for_box = (mask > thr).astype(np.float32) assert masks_for_box.sum() > 0, "Empty mask!" x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2)) y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1)) return x0, y0, x1, y1 def resize_foreground( image: Union[Image.Image, np.ndarray], ratio: float, out_size=None, ) -> Image: if isinstance(image, np.ndarray): image = Image.fromarray(image, mode="RGBA") assert image.mode == "RGBA" # Get bounding box mask_np = np.array(image)[:, :, -1] x1, y1, x2, y2 = get_bbox_from_mask(mask_np, thr=0.5) h, w = y2 - y1, x2 - x1 yc, xc = (y1 + y2) / 2, (x1 + x2) / 2 scale = max(h, w) / ratio new_image = torchvision_F.crop( image, top=int(yc - scale / 2), left=int(xc - scale / 2), height=int(scale), width=int(scale), ) if out_size is not None: new_image = new_image.resize(out_size) return new_image