Spaces:
Runtime error
Runtime error
File size: 15,221 Bytes
6257003 4d0e579 6257003 4d0e579 6257003 89d8863 6257003 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import gradio as gr
import json
import numpy as np
import pandas as pd
from datasets import load_from_disk
from itertools import chain
import operator
pd.options.plotting.backend = "plotly"
TITLE = "Identity Biases in Diffusion Models: Professions"
_INTRO = """
# Identity Biases in Diffusion Models: Professions
Explore profession-level social biases in the data from [DiffusionBiasExplorer](https://hf.co/spaces/tti-bias/diffusion-bias-explorer)!
This demo leverages the gender and ethnicity representation clusters described in the [companion app](https://hf.co/spaces/tti-bias/diffusion-face-clustering)
to analyze social trends in machine-generated visual representations of professions.
The **Professions Overview** tab lets you compare the distribution over
[identity clusters](https://hf.co/spaces/tti-bias/diffusion-face-clustering "Identity clusters identify visual features in the systems' output space correlated with variation of gender and ethnicity in input prompts.")
across professions for Stable Diffusion and Dalle-2 systems (or aggregated for `All Models`).
The **Professions Focus** tab provides more details for each of the individual professions, including direct system comparisons and examples of profession images for each cluster.
This work was done in the scope of the [Stable Bias Project](https://hf.co/spaces/tti-bias/stable-bias).
"""
_ = """
For example, you can use this tool to investigate:
- How do each model's representation of professions correlate with the gender ratios reported by the [U.S. Bureau of Labor
Statistics](https://www.bls.gov/cps/cpsaat11.htm "The reported percentage of women in each profession in the US is indicated in the `Labor Women` column in the Professions Overview tab.")?
Are social trends reflected, are they exaggerated?
- Which professions have the starkest differences in how different models represent them?
"""
professions_dset = load_from_disk("professions")
professions_df = professions_dset.to_pandas()
clusters_dicts = dict(
(num_cl, json.load(open(f"clusters/professions_to_clusters_{num_cl}.json")))
for num_cl in [12, 24, 48]
)
cluster_summaries_by_size = json.load(open("clusters/cluster_summaries_by_size.json"))
prompts = pd.read_csv("promptsadjectives.csv")
professions = ["all professions"] + list(
# sorted([p.lower() for p in prompts["Occupation-Noun"].tolist()])
sorted([p for p in prompts["Occupation-Noun"].tolist()])
)
models = {
"All": "All Models",
"SD_14": "Stable Diffusion 1.4",
"SD_2": "Stable Diffusion 2",
"DallE": "Dall-E 2",
}
df_models = {
"All Models": "All",
"Stable Diffusion 1.4": "SD_14",
"Stable Diffusion 2": "SD_2",
"Dall-E 2": "DallE",
}
def describe_cluster(num_clusters, block="label"):
cl_dict = clusters_dicts[num_clusters]
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
labels_values.reverse()
total = float(sum(cl_dict.values()))
lv_prcnt = list(
(item[0], round(item[1] * 100 / total, 0)) for item in labels_values
)
top_label = lv_prcnt[0][0]
description_string = (
"<span>The most represented %s is <b>%s</b>, making up about <b>%d%%</b> of the cluster.</span>"
% (to_string(block), to_string(top_label), lv_prcnt[0][1])
)
description_string += "<p>This is followed by: "
for lv in lv_prcnt[1:]:
description_string += "<BR/><b>%s:</b> %d%%" % (to_string(lv[0]), lv[1])
description_string += "</p>"
return description_string
def make_profession_plot(num_clusters, prof_name):
sorted_cl_scores = [
(k, v)
for k, v in sorted(
clusters_dicts[num_clusters]["All"][prof_name][
"cluster_proportions"
].items(),
key=lambda x: x[1],
reverse=True,
)
if v > 0
]
pre_pandas = dict(
[
(
models[mod_name],
dict(
(
f"Cluster {k}",
clusters_dicts[num_clusters][mod_name][prof_name][
"cluster_proportions"
][k],
)
for k, _ in sorted_cl_scores
),
)
for mod_name in models
]
)
df = pd.DataFrame.from_dict(pre_pandas)
prof_plot = df.plot(kind="bar", barmode="group")
cl_summary_text = f"Profession '{prof_name}':\n"
for cl_id, _ in sorted_cl_scores:
cl_summary_text += f"- {cluster_summaries_by_size[str(num_clusters)][int(cl_id)].replace(' gender terms', '').replace('; ethnicity terms:', ',')} \n"
return (
prof_plot,
gr.update(
choices=[k for k, _ in sorted_cl_scores], value=sorted_cl_scores[0][0]
),
gr.update(value=cl_summary_text),
)
def make_profession_table(num_clusters, prof_names, mod_name, max_cols=8):
professions_list_clusters = [
(
prof_name,
clusters_dicts[num_clusters][df_models[mod_name]][prof_name][
"cluster_proportions"
],
)
for prof_name in prof_names
]
totals = sorted(
[
(
k,
sum(
prof_clusters[str(k)]
for _, prof_clusters in professions_list_clusters
),
)
for k in range(num_clusters)
],
key=lambda x: x[1],
reverse=True,
)[:max_cols]
prof_list_pre_pandas = [
dict(
[
("Profession", prof_name),
(
"Entropy",
clusters_dicts[num_clusters][df_models[mod_name]][prof_name][
"entropy"
],
),
(
"Labor Women",
clusters_dicts[num_clusters][df_models[mod_name]][prof_name][
"labor_fm"
][0],
),
("", ""),
]
+ [(f"Cluster {k}", prof_clusters[str(k)]) for k, v in totals if v > 0]
)
for prof_name, prof_clusters in professions_list_clusters
]
clusters_df = pd.DataFrame.from_dict(prof_list_pre_pandas)
cl_summary_text = ""
for cl_id, _ in totals[:max_cols]:
cl_summary_text += f"- {cluster_summaries_by_size[str(num_clusters)][cl_id].replace(' gender terms', '').replace('; ethnicity terms:', ',')} \n"
return (
[c[0] for c in totals],
(
clusters_df.style.background_gradient(
axis=None, vmin=0, vmax=100, cmap="YlGnBu"
)
.format(precision=1)
.to_html()
),
gr.update(value=cl_summary_text),
)
def get_image(model, fname, score):
return (
professions_dset.select(
professions_df[
(professions_df["image_path"] == fname)
& (professions_df["model"] == model)
].index
)["image"][0],
" ".join(fname.split("/")[0].split("_")[4:])
+ f" | {score:.2f}"
+ f" | {models[model]}",
)
def show_examplars(num_clusters, prof_name, cl_id, confidence_threshold=0.6):
# only show images where the similarity to the centroid is > confidence_threshold
examplars_dict = clusters_dicts[num_clusters]["All"][prof_name][
"cluster_examplars"
][str(cl_id)]
l = [
tuple(img)
for img in examplars_dict["close"]
+ examplars_dict["mid"][:2]
+ examplars_dict["far"]
]
l = [
img
for i, img in enumerate(l)
if img[0] > confidence_threshold and img not in l[:i]
]
return (
[get_image(model, fname, score) for score, model, fname in l],
gr.update(
label=f"Generations for profession ''{prof_name}'' assigned to cluster {cl_id} of {num_clusters}"
),
)
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(_INTRO)
gr.HTML(
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
)
with gr.Tab("Professions Overview"):
gr.Markdown(
"""
Select one or more professions and models from the dropdowns on the left to see which clusters are most representative for this combination.
Try choosing different numbers of clusters to see if the results change, and then go to the 'Profession Focus' tab to go more in-depth into these results.
The `Labor Women` column provided for comparison corresponds to the gender ratio reported by the
[U.S. Bureau of Labor Statistics](https://www.bls.gov/cps/cpsaat11.htm) for each profession.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Select the parameters here:")
num_clusters = gr.Radio(
[12, 24, 48],
value=12,
label="How many clusters do you want to use to represent identities?",
)
model_choices = gr.Dropdown(
[
"All Models",
"Stable Diffusion 1.4",
"Stable Diffusion 2",
"Dall-E 2",
],
value="All Models",
label="Which models do you want to compare?",
interactive=True,
)
profession_choices_overview = gr.Dropdown(
professions,
value=[
"all professions",
"CEO",
"director",
"social assistant",
"social worker",
],
label="Which professions do you want to compare?",
multiselect=True,
interactive=True,
)
with gr.Column(scale=3):
with gr.Row():
table = gr.HTML(
label="Profession assignment per cluster", wrap=True
)
with gr.Row():
# clusters = gr.Dataframe(type="array", visible=False, col_count=1)
clusters = gr.Textbox(label="clusters", visible=False)
gr.Markdown(
"""
##### What do the clusters mean?
Below is a summary of the identity cluster compositions.
For more details, see the [companion demo](https://huggingface.co/spaces/tti-bias/DiffusionFaceClustering):
"""
)
with gr.Row():
with gr.Accordion(label="Cluster summaries", open=True):
cluster_descriptions_table = gr.Text(
"TODO", label="Cluster summaries", show_label=False
)
with gr.Tab("Profession Focus"):
with gr.Row():
with gr.Column():
gr.Markdown(
"Select a profession to visualize and see which clusters and identity groups are most represented in the profession, as well as some examples of generated images below."
)
profession_choice_focus = gr.Dropdown(
choices=professions,
value="scientist",
label="Select profession:",
)
num_clusters_focus = gr.Radio(
[12, 24, 48],
value=12,
label="How many clusters do you want to use to represent identities?",
)
with gr.Column():
plot = gr.Plot(
label=f"Makeup of the cluster assignments for profession {profession_choice_focus}"
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
##### What do the clusters mean?
Below is a summary of the identity cluster compositions.
For more details, see the [companion demo](https://huggingface.co/spaces/tti-bias/DiffusionFaceClustering):
"""
)
with gr.Accordion(label="Cluster summaries", open=True):
cluster_descriptions = gr.Text(
"TODO", label="Cluster summaries", show_label=False
)
with gr.Column():
gr.Markdown(
"""
##### What's in the clusters?
You can show examples of profession images assigned to each identity cluster by selecting one here:
"""
)
with gr.Accordion(label="Cluster selection", open=True):
cluster_id_focus = gr.Dropdown(
choices=[i for i in range(num_clusters_focus.value)],
value=0,
label="Select cluster to visualize:",
)
with gr.Row():
examplars_plot = gr.Gallery(
label="Profession images assigned to the selected cluster."
).style(grid=4, height="auto", container=True)
demo.load(
make_profession_table,
[num_clusters, profession_choices_overview, model_choices],
[clusters, table, cluster_descriptions_table],
queue=False,
)
demo.load(
make_profession_plot,
[num_clusters_focus, profession_choice_focus],
[plot, cluster_id_focus, cluster_descriptions],
queue=False,
)
demo.load(
show_examplars,
[
num_clusters_focus,
profession_choice_focus,
cluster_id_focus,
],
[examplars_plot, examplars_plot],
queue=False,
)
for var in [num_clusters, model_choices, profession_choices_overview]:
var.change(
make_profession_table,
[num_clusters, profession_choices_overview, model_choices],
[clusters, table, cluster_descriptions_table],
queue=False,
)
for var in [num_clusters_focus, profession_choice_focus]:
var.change(
make_profession_plot,
[num_clusters_focus, profession_choice_focus],
[plot, cluster_id_focus, cluster_descriptions],
queue=False,
)
for var in [num_clusters_focus, profession_choice_focus, cluster_id_focus]:
var.change(
show_examplars,
[
num_clusters_focus,
profession_choice_focus,
cluster_id_focus,
],
[examplars_plot, examplars_plot],
queue=False,
)
if __name__ == "__main__":
demo.queue().launch(debug=True)
|