Spaces:
Running
Running
import gradio as gr | |
import os | |
import sys | |
import json | |
import requests | |
MODEL = "gpt-3.5-turbo-0125" | |
API_URL = os.getenv("API_URL") | |
DISABLED = os.getenv("DISABLED") == 'True' | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
NUM_THREADS = int(os.getenv("NUM_THREADS")) | |
print (NUM_THREADS) | |
def exception_handler(exception_type, exception, traceback): | |
print("%s: %s" % (exception_type.__name__, exception)) | |
sys.excepthook = exception_handler | |
sys.tracebacklimit = 0 | |
#https://github.com/gradio-app/gradio/issues/3531#issuecomment-1484029099 | |
def parse_codeblock(text): | |
lines = text.split("\n") | |
for i, line in enumerate(lines): | |
if "```" in line: | |
if line != "```": | |
lines[i] = f'<pre><code class="{lines[i][3:]}">' | |
else: | |
lines[i] = '</code></pre>' | |
else: | |
if i > 0: | |
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">") | |
return "".join(lines) | |
def predict(inputs, top_p, temperature, chat_counter, chatbot, history, request:gr.Request): | |
payload = { | |
"model": MODEL, | |
"messages": [{"role": "user", "content": f"{inputs}"}], | |
"temperature" : 1.0, | |
"top_p":1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {OPENAI_API_KEY}" | |
} | |
# print(f"chat_counter - {chat_counter}") | |
if chat_counter != 0 : | |
messages = [] | |
for i, data in enumerate(history): | |
if i % 2 == 0: | |
role = 'user' | |
else: | |
role = 'assistant' | |
message = {} | |
message["role"] = role | |
message["content"] = data | |
messages.append(message) | |
message = {} | |
message["role"] = "user" | |
message["content"] = inputs | |
messages.append(message) | |
payload = { | |
"model": MODEL, | |
"messages": messages, | |
"temperature" : temperature, | |
"top_p": top_p, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
chat_counter += 1 | |
history.append(inputs) | |
token_counter = 0 | |
partial_words = "" | |
counter = 0 | |
try: | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
response_code = f"{response}" | |
#if response_code.strip() != "<Response [200]>": | |
# #print(f"response code - {response}") | |
# raise Exception(f"Sorry, hitting rate limit. Please try again later. {response}") | |
for chunk in response.iter_lines(): | |
#Skipping first chunk | |
if counter == 0: | |
counter += 1 | |
continue | |
#counter+=1 | |
# check whether each line is non-empty | |
if chunk.decode() : | |
chunk = chunk.decode() | |
# decode each line as response data is in bytes | |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: | |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
token_counter += 1 | |
yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False) # resembles {chatbot: chat, state: history} | |
except Exception as e: | |
print (f'error found: {e}') | |
yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True) | |
print(json.dumps({"chat_counter": chat_counter, "payload": payload, "partial_words": partial_words, "token_counter": token_counter, "counter": counter})) | |
def reset_textbox(): | |
return gr.update(value='', interactive=False), gr.update(interactive=False) | |
title = """<h1 align="center">Free Chat GPT 3.5 online</h1>""" | |
if DISABLED: | |
title = """<h1 align="center" style="color:red">This app has reached OpenAI's usage limit. We are currently requesting an increase in our quota. Please check back in a few days.</h1>""" | |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
User: <utterance> | |
Assistant: <utterance> | |
User: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of a gpt-3.5 LLM. | |
""" | |
theme = gr.themes.Default(primary_hue="green") | |
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} | |
#chatbot {height: 520px; overflow: auto;}""", | |
theme=theme) as demo: | |
gr.HTML(title) | |
gr.HTML("""<h3 align="center">This app provides you full access to GPT-3.5 (4096 token limit) thanks to <a href="https://stablediffusion.fr">Stable Diffusion AI online</a>. You don't need any OPENAI API key.<br><br>If this app doesn't respond, it's likely due to too much visitors. Consider trying <a href="https://stablediffusion.fr/chatgpt">Open GPT</a> or <a href="https://stablediffusion.fr/llama2">Llama 2</a> app</h3>""") | |
with gr.Column(elem_id = "col_container", visible=False) as main_block: | |
#openai_api_key = gr.Textbox(type='password', label="Enter only your OpenAI API key here") | |
chatbot = gr.Chatbot(elem_id='chatbot') #c | |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t | |
state = gr.State([]) #s | |
with gr.Row(): | |
with gr.Column(scale=7): | |
b1 = gr.Button(visible=not DISABLED) | |
with gr.Column(scale=3): | |
server_status_code = gr.Textbox(label="Status code from OpenAI server", ) | |
#inputs, top_p, temperature, top_k, repetition_penalty | |
with gr.Accordion("Parameters", open=False): | |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) | |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) | |
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) | |
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) | |
chat_counter = gr.Number(value=0, visible=False, precision=0) | |
def enable_inputs(): | |
return main_block.update(visible=True) | |
accept_button.click(None, None, accept_checkbox, _js=js, queue=False) | |
accept_checkbox.change(fn=enable_inputs, inputs=[], outputs=[user_consent_block, main_block], queue=False) | |
inputs.submit(reset_textbox, [], [inputs, b1], queue=False) | |
inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) #openai_api_key | |
b1.click(reset_textbox, [], [inputs, b1], queue=False) | |
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) #openai_api_key | |
demo.queue(max_size=10, api_open=False).launch(share=False) | |