File size: 9,454 Bytes
426833b
c2da12d
426833b
e5e58b2
 
 
 
 
35d14ab
2e1c335
e5e58b2
b8c5deb
426833b
 
 
 
b8c5deb
 
 
 
 
 
da08473
 
 
 
47b72cd
da08473
 
 
426833b
da08473
47b72cd
e5e58b2
7a5edc2
bf351ec
7a5edc2
 
 
da08473
 
 
 
 
 
 
 
 
 
 
e5e58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a5edc2
e5e58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d14ab
66338d8
35d14ab
4e1e761
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import torch
import spaces
import re
import yaml
import tempfile
import subprocess
from pathlib import Path
from dataclasses import dataclass
import gradio as gr
from src.flux.xflux_pipeline import XFluxPipeline
from huggingface_hub import login
import multiprocessing

# Set the multiprocessing start method globally
multiprocessing.set_start_method('spawn', force=True)

hf_token = os.getenv("HF_TOKEN")
if hf_token:
    login(token=hf_token)
else:
    print("No Hugging Face token found.")

@dataclass
class Config:
    name: str = "flux-dev"
    device: str = "cpu"
    offload: bool = False
    share: bool = False
    ckpt_dir: str = "."

xflux_pipeline = XFluxPipeline(Config.name, Config.device, Config.offload)
xflux_pipeline.to(device='cuda' if torch.cuda.is_available() else 'cpu')

@spaces.GPU
@torch.inference_mode()
def generate(**kwargs): 
    return xflux_pipeline.gradio_generate(**kwargs)
    
def parse_args() -> Config:
    parser = argparse.ArgumentParser(description="Flux")
    parser.add_argument("--name", type=str, default="flux-dev", help="Model name")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
    parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
    parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
    parser.add_argument("--ckpt_dir", type=str, default=".", help="Folder with checkpoints in safetensors format")
    
    args = parser.parse_args()
    return Config(**vars(args))
    
def list_dirs(path):
    if path is None or path == "None" or path == "":
        return

    if not os.path.exists(path):
        path = os.path.dirname(path)
        if not os.path.exists(path):
            return

    if not os.path.isdir(path):
        path = os.path.dirname(path)

    def natural_sort_key(s, regex=re.compile("([0-9]+)")):
        return [
            int(text) if text.isdigit() else text.lower() for text in regex.split(s)
        ]

    subdirs = [
        (item, os.path.join(path, item))
        for item in os.listdir(path)
        if os.path.isdir(os.path.join(path, item))
    ]
    subdirs = [
        filename
        for item, filename in subdirs
        if item[0] != "." and item not in ["__pycache__"]
    ]
    subdirs = sorted(subdirs, key=natural_sort_key)
    if os.path.dirname(path) != "":
        dirs = [os.path.dirname(path), path] + subdirs
    else:
        dirs = [path] + subdirs

    if os.sep == "\\":
        dirs = [d.replace("\\", "/") for d in dirs]
    for d in dirs:
        yield d

def list_train_data_dirs():
    current_train_data_dir = "."
    return list(list_dirs(current_train_data_dir))

def update_config(d, u):
    for k, v in u.items():
        if isinstance(v, dict):
            d[k] = update_config(d.get(k, {}), v)
        else:
            # convert Gradio components to strings
            if hasattr(v, 'value'):
                d[k] = str(v.value)
            else:
                try:
                    d[k] = int(v)
                except (TypeError, ValueError):
                    d[k] = str(v)
    return d

def start_lora_training(
        data_dir: str, output_dir: str, lr: float, steps: int, rank: int
    ):
    inputs = {
        "data_config": {
            "img_dir": data_dir,
            },
            "output_dir": output_dir,
            "learning_rate": lr,
            "rank": rank,
            "max_train_steps": steps,
    }

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        print(f"Creating folder {output_dir} for the output checkpoint file...")

    script_path = Path(__file__).resolve()
    config_path = script_path.parent / "train_configs" / "test_lora.yaml"
    with open(config_path, 'r') as file:
        config = yaml.safe_load(file)

    config = update_config(config, inputs)
    print("Config file is updated...", config)
    with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".yaml") as temp_file:
        yaml.dump(config, temp_file, default_flow_style=False)
        tmp_config_path = temp_file.name

    command = ["accelerate", "launch", "train_flux_lora_deepspeed.py", "--config", tmp_config_path]
    result = subprocess.run(command, check=True)

    # rRemove the temporary file after the command is run
    Path(tmp_config_path).unlink()

    return result


def create_demo(
        model_type: str,
        device: str = "cuda" if torch.cuda.is_available() else "cpu",
        offload: bool = False,
        ckpt_dir: str = "",
    ):
    checkpoints = sorted(Path(ckpt_dir).glob("*.safetensors"))

    with gr.Blocks() as demo:
        gr.Markdown(f"# Flux Adapters by XLabs AI - Model: {model_type}")
        with gr.Tab("Inference"):
            with gr.Row():
                with gr.Column():
                    prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")

                    with gr.Accordion("Generation Options", open=False):
                        with gr.Row():
                            width = gr.Slider(512, 2048, 1024, step=16, label="Width")
                            height = gr.Slider(512, 2048, 1024, step=16, label="Height")
                        neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo")
                        with gr.Row():
                            num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                            timestep_to_start_cfg = gr.Slider(1, 50, 1, step=1, label="timestep_to_start_cfg")
                        with gr.Row():
                            guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
                            true_gs = gr.Slider(1.0, 5.0, 3.5, step=0.1, label="True Guidance", interactive=True)
                        seed = gr.Textbox(-1, label="Seed (-1 for random)")

                    with gr.Accordion("ControlNet Options", open=False):
                        control_type = gr.Dropdown(["canny", "hed", "depth"], label="Control type")
                        control_weight = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="Controlnet weight", interactive=True)
                        local_path = gr.Dropdown(checkpoints, label="Controlnet Checkpoint",
                            info="Local Path to Controlnet weights (if no, it will be downloaded from HF)"
                            )
                        controlnet_image = gr.Image(label="Input Controlnet Image", visible=True, interactive=True)

                    with gr.Accordion("LoRA Options", open=False):
                        lora_weight = gr.Slider(0.0, 1.0, 0.9, step=0.1, label="LoRA weight", interactive=True)
                        lora_local_path = gr.Dropdown(
                            checkpoints, label="LoRA Checkpoint", info="Local Path to Lora weights"
                            )

                    with gr.Accordion("IP Adapter Options", open=False):
                        image_prompt = gr.Image(label="image_prompt", visible=True, interactive=True)
                        ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="ip_scale")
                        neg_image_prompt = gr.Image(label="neg_image_prompt", visible=True, interactive=True)
                        neg_ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="neg_ip_scale")
                        ip_local_path = gr.Dropdown(
                            checkpoints, label="IP Adapter Checkpoint",
                            info="Local Path to IP Adapter weights (if no, it will be downloaded from HF)"
                            )
                    generate_btn = gr.Button("Generate")

                with gr.Column():
                    output_image = gr.Image(label="Generated Image")
                    download_btn = gr.File(label="Download full-resolution")

            inputs = [prompt, image_prompt, controlnet_image, width, height, guidance,
                    num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,
                    neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,
                    lora_weight, local_path, lora_local_path, ip_local_path
                    ]
            generate_btn.click(
                fn=generate,
                inputs=inputs,
                outputs=[output_image, download_btn],
            )

        with gr.Tab("LoRA Finetuning"):
            data_dir =  gr.Dropdown(list_train_data_dirs(),
                                    label="Training images (directory containing the training images)"
                                    )
            output_dir = gr.Textbox(label="Output Path", value="lora_checkpoint")

            with gr.Accordion("Training Options", open=True):
                lr = gr.Textbox(label="Learning Rate", value="1e-5")
                steps = gr.Slider(10000, 20000, 20000, step=100, label="Train Steps")
                rank = gr.Slider(1, 100, 16, step=1, label="LoRa Rank")

            training_btn = gr.Button("Start training")
            training_btn.click(
                fn=start_lora_training,
                inputs=[data_dir, output_dir, lr, steps, rank],
                outputs=[],
            )


    return demo

if __name__ == "__main__":
    config = Config()  
    demo = create_demo(config.name, config.device, config.offload, config.ckpt_dir)
    demo.launch(share=True)