Spaces:
Runtime error
Runtime error
File size: 16,260 Bytes
824afbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
from typing import Optional, Tuple
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from ioblocks import GaussianMixtureIOLayer, FSQ
from transformer import Stack, ShapeRotator, Block as PerfBlock, GPTOutput, CACHE_FILL_VALUE, FFNN, Norm
from tokenizer import make_tokenizer
from utils import si_module, exists, isnt, tqdm0, print0, default, print0_colored
from utils import load_ckpt
@si_module
class LatentQuantizer(nn.Module):
class Config:
compressor_config: Optional[FSQ.Config] = None
dim: Optional[int] = None
ff_dim: Optional[int] = None
input_dim: int = None
from_pretrained: Optional[Tuple[str, str]] = None
def __init__(self, c: Config):
super().__init__()
if exists(c.from_pretrained):
checkpoint = load_ckpt(*c.from_pretrained)
else:
assert exists(c.compressor_config), f'hmm {c}'
self.compressor = c.compressor_config()
self.ffnn = FFNN(c.dim, c.ff_dim)
self.input = nn.Linear(c.input_dim, c.dim) if exists(c.input_dim) else nn.Identity()
if exists(c.from_pretrained):
self.load_state_dict(checkpoint)
@T.no_grad()
def forward(self, x, return_latent=False, known_latent=None):
"""
x: (B, S, D)
"""
if exists(known_latent):
return self.compressor.indices_to_codes(known_latent)
x = self.input(x)
x = self.ffnn(x)
x, tokens = self.compressor(x)
if return_latent:
return x, tokens
return x
@si_module
class TransformerVAE(nn.Module):
class Config:
io_config: Optional[GaussianMixtureIOLayer.Config] = None
stack_config: Optional[Stack.Config] = None
quantizer_config: Optional[LatentQuantizer.Config] = None
plex_layer: int = None
plex_roll: int = 1
split: bool = True
from_pretrained: Optional[Tuple[str, str]] = None
def __init__(self, c: Config):
super().__init__()
if exists(c.from_pretrained):
checkpoint = load_ckpt(*c.from_pretrained)
else:
assert (exists(c.io_config) and exists(c.stack_config) and exists(c.quantizer_config)), f'hmm {c}'
self.io = c.io_config()
self.stack = c.stack_config()
self.plex_layer = c.stack_config.layers//2
self.plex_roll = c.plex_roll
self.plex_dim = c.quantizer_config.dim
assert self.plex_dim is not None and c.stack_config.dim is not None, f'One of the following are None: self.plex_dim: {self.plex_dim}, c.stack_config.dim: {c.stack_config.dim}'
self.plex_projection = nn.Linear(self.plex_dim, c.stack_config.dim)
self.out_norm = Norm(c.stack_config.dim)
if c.split:
self.io2 = c.io_config()
self.plex_projection2 = nn.Linear(self.plex_dim, c.stack_config.dim)
self.io2.fc_loc = None
self.io2.fc_scale = None
self.io2.fc_weight = None
kv_heads = c.stack_config.kv_heads or c.stack_config.n_head
head_dim = c.stack_config.dim // c.stack_config.n_head
self.cache_num_layers = c.stack_config.layers + ((c.stack_config.layers - self.plex_layer) if c.split else 0)
cache_shape = [self.cache_num_layers, c.stack_config.seq_len, 2, kv_heads, head_dim]
self.cache_shape = cache_shape
self.cache = [None] * self.cache_num_layers
if exists(c.from_pretrained):
result = self.load_state_dict(checkpoint, strict=False)
print0_colored(result, 'yellow')
self.quantizer = c.quantizer_config().eval()
self.quantizer.requires_grad = False
@T.no_grad()
def quantize(self, x):
if self.c.split:
x1, x2 = x.chunk(2, dim=-1)
with T.autocast(device_type='cuda', dtype=T.bfloat16):
quantized1 = self.quantizer(x1)
quantized2 = self.quantizer(x2)
return quantized1, quantized2
else:
with T.autocast(device_type='cuda', dtype=T.bfloat16):
return self.quantizer(x)
@T.no_grad()
def untokenize(self, token_data):
return self.quantizer(None, known_latent=token_data)
def init_cache(self, bsize, device, dtype, length:int=None):
cache_shape = self.cache_shape.copy()
cache_shape[1] = length or cache_shape[1]
self.cache = T.full((bsize, *cache_shape), CACHE_FILL_VALUE, device=device, dtype=dtype).transpose(0, 1)
def deinit_cache(self):
self.cache = [None] * self.cache_num_layers
@T.no_grad()
def forward(self, data, next_tokens: Optional[Tuple[T.Tensor, T.Tensor]] = None, temps: Optional[Tuple[float, Tuple[float, float]]] = None):
if self.c.split:
x1, x2 = data.chunk(2, dim=-1)
x = self.io.input(x1) + self.io2.input(x2)
else:
x = self.io.input(data)
cache_idx = 0
for l, layer in enumerate(self.stack.layers):
if l == self.plex_layer:
if self.c.split:
plex1, plex2 = self.quantize(data)
plex1 = T.roll(plex1, -self.c.plex_roll, dims=1)
plex2 = T.roll(plex2, -self.c.plex_roll, dims=1)
if exists(next_tokens):
plex1[:, -1:] = self.untokenize(next_tokens[0])
plex2[:, -1:] = self.untokenize(next_tokens[1])
x1 = x + self.plex_projection(plex1)
x2 = x + self.plex_projection2(plex2)
else:
plex = self.quantize(data)
plex = T.roll(plex, -self.c.plex_roll, dims=1)
if exists(next_tokens):
plex[:, -1:] = self.untokenize(next_tokens)
x = x + self.plex_projection(plex)
if l < self.plex_layer:
x = layer(x, kv=self.cache[l])
else:
if self.c.split:
x1 = layer(x1, kv=self.cache[self.plex_layer + cache_idx])
cache_idx += 1
x2 = layer(x2, kv=self.cache[self.plex_layer + cache_idx])
cache_idx += 1
else:
x = layer(x, kv=self.cache[l])
with T.autocast(device_type='cuda', dtype=T.bfloat16):
if self.c.split:
x1, x2 = self.out_norm(x1), self.out_norm(x2)
out1, out2 = self.io.output(x1), self.io.output(x2)
else:
x = self.out_norm(x)
out = self.io.output(x)
if isnt(temps):
if self.c.split:
return out1, out2
else:
return out
else:
if self.c.split:
next_data1 = self.io.temp_sample(out1, temps)[:, -1:, :]
next_data2 = self.io2.temp_sample(out2, temps)[:, -1:, :]
next_data = T.cat([next_data1, next_data2], dim=-1)
return next_data
else:
next_data = self.io.temp_sample(out, temps)[:, -1:, :]
return next_data
@si_module
class HertzDevModel(nn.Module):
class Config:
dim: int
vocab_size: int
stack_config: Optional[Stack.Config] = None
latent_size: int = 32
split: bool = True
quantizer_config: Optional[LatentQuantizer.Config] = None
resynthesizer_config: Optional[TransformerVAE.Config] = None
from_pretrained: Optional[Tuple[str, str]] = None
def __init__(self, c: Config):
super().__init__()
if exists(c.from_pretrained):
checkpoint = load_ckpt(*c.from_pretrained)
else:
assert (exists(c.stack_config)), f'hmm {c}'
self.input = nn.Linear(c.latent_size, c.dim)
if self.c.split:
self.input2 = nn.Linear(c.latent_size, c.dim)
self.shape_rotator = ShapeRotator(c.stack_config.dim//c.stack_config.n_head, c.stack_config.seq_len, theta=c.stack_config.theta)
self.layers = nn.ModuleList([
PerfBlock(
dim=c.stack_config.dim,
layer_id=l,
n_head=c.stack_config.n_head,
kv_heads=c.stack_config.kv_heads,
ff_dim=c.stack_config.ff_dim,
eps=c.stack_config.eps,
shape_rotator=self.shape_rotator,
) for l in range(c.stack_config.layers)
])
self.output = GPTOutput(c.dim, c.vocab_size)
if self.c.split:
self.output2 = GPTOutput(c.dim, c.vocab_size)
self.cache = [None] * c.stack_config.layers
self.kv_heads = c.stack_config.kv_heads or c.stack_config.n_head
self.head_dim = c.stack_config.dim // c.stack_config.n_head
if exists(c.from_pretrained):
result = self.load_state_dict(checkpoint, strict=False)
print0_colored(result, 'yellow')
self.resynthesizer = c.resynthesizer_config().eval()
self.resynthesizer.requires_grad = False
self.audio_tokenizer = make_tokenizer(device='cpu')
self.audio_cache = None
self.audio_latent_cache = None
self.use_audio_cache = False
@T.no_grad()
def tokenize(self, audio_data):
orig_audio_shape = audio_data.shape
if exists(self.audio_cache):
audio_data = T.cat([self.audio_cache, audio_data], dim=-1)
self.audio_cache = audio_data[..., -(6*16_000):]
elif self.use_audio_cache:
self.audio_cache = audio_data[..., -(6*16_000):]
if audio_data.shape[1] == 2:
enc_ch1 = self.audio_tokenizer.latent_from_data(audio_data[:, 0:1])
enc_ch2 = self.audio_tokenizer.latent_from_data(audio_data[:, 1:2])
return T.cat([enc_ch1, enc_ch2], dim=-1)[:, -(orig_audio_shape[-1]//2000):]
else:
return self.audio_tokenizer.latent_from_data(audio_data)[:, -(orig_audio_shape[-1]//2000):]
@T.no_grad()
def untokenize(self, token_data):
if exists(self.audio_latent_cache):
token_data = T.cat([self.audio_latent_cache, token_data], dim=1)
self.audio_latent_cache = token_data[:, -(6*8):]
elif self.use_audio_cache:
self.audio_latent_cache = token_data[:, -(6*8):]
if token_data.shape[-1] == 2*self.c.latent_size:
dec_ch1 = self.audio_tokenizer.data_from_latent(token_data[:, :self.c.latent_size])
dec_ch2 = self.audio_tokenizer.data_from_latent(token_data[:, self.c.latent_size:])
return T.cat([dec_ch1, dec_ch2], dim=1)[..., -(token_data.shape[1]*2000):]
else:
return self.audio_tokenizer.data_from_latent(token_data)[..., -(token_data.shape[1]*2000):]
def init_cache(self, bsize, device, dtype, length:int=None):
cache_shape = [self.c.stack_config.layers, length or self.c.stack_config.seq_len, 2, self.kv_heads, self.head_dim]
self.cache = T.full((bsize, *cache_shape), CACHE_FILL_VALUE, device=device, dtype=dtype).transpose(0, 1)
self.resynthesizer.init_cache(bsize, device, dtype, length)
self.use_audio_cache = True
def deinit_cache(self):
self.cache = [None] * len(self.layers)
self.resynthesizer.deinit_cache()
self.audio_cache = None
self.audio_latent_cache = None
self.use_audio_cache = False
@T.no_grad()
def forward(self, data):
if self.c.split:
x1, x2 = data.chunk(2, dim=-1)
x = self.input(x1) + self.input2(x2)
else:
x = self.input(data)
for l, layer in enumerate(self.layers):
x = layer(x, kv=self.cache[l])
if self.c.split:
return self.output(x), self.output2(x)
else:
return self.output(x)
@T.no_grad()
def next_audio_from_audio(self, audio_data: T.Tensor, temps=(0.8, (0.5, 0.1))):
latents_in = self.tokenize(audio_data)
next_latents = self.next_latent(latents_in, temps)
next_model_latent = next_latents[..., self.c.latent_size:]
audio_decoded = self.untokenize(next_model_latent)[..., -2000:]
return audio_decoded
@T.no_grad()
def next_latent(self, model_input: T.Tensor, temps=(0.8, (0.5, 0.1))):
if self.c.split:
logits1, logits2 = self.forward(model_input)
next_logits1 = logits1[:, -1]
next_logits2 = logits2[:, -1]
next_token1 = F.softmax(next_logits1 / temps[0], dim=-1).multinomial(1)
next_token2 = F.softmax(next_logits2 / temps[0], dim=-1).multinomial(1)
next_input = self.resynthesizer(model_input, next_tokens=(next_token1, next_token2), temps=temps[1])
else:
logits = self.forward(model_input)
next_logits = logits[:, -1]
next_token = F.softmax(next_logits / temps[0], dim=-1).multinomial(1)
next_input = self.resynthesizer(model_input, next_tokens=next_token, temps=temps[1])
return next_input
@T.no_grad()
def completion(self, data: T.Tensor, temps=(0.8, (0.5, 0.1)), gen_len=None, use_cache=True) -> T.Tensor:
"""
only accepts latent-space data.
"""
if use_cache:
self.init_cache(data.shape[0], data.device, T.bfloat16)
next_input = generated = data
target_len = min(data.shape[1] + default(gen_len, data.shape[1]), self.c.stack_config.seq_len)
for _ in tqdm0(range(data.shape[1], target_len)):
model_input = next_input if use_cache else generated
next_input = self.next_latent(model_input, temps)
generated = T.cat([generated, next_input], dim=1)
if use_cache:
self.deinit_cache()
return generated
def get_hertz_dev_config(is_split=True, use_pure_audio_ablation=False):
if is_split:
checkpoints = [('inference_care_50000', 'e4ff4fe5c7e9f066410d2a5673b7a935'), ('inference_scion_54000', 'cb8bc484423922747b277ebc2933af5d')]
elif not use_pure_audio_ablation:
checkpoints = [('inference_whip_72000', '5e7cee7316900737d55fc5d44cc7a8f7'), ('inference_caraway_112000', 'fcb8368ef8ebf7712f3e31e6856da580')]
else:
checkpoints = [('inference_whip_72000', '5e7cee7316900737d55fc5d44cc7a8f7'), ('inference_syrup_110000', '353c48f553f1706824c11f3bb6a049e9')]
quantizer_config=LatentQuantizer.Config(
from_pretrained=('inference_volcano_3', 'd42bf674022c5f84b051d5d7794f6169'),
compressor_config=FSQ.Config(
levels=[8,8,8,8,8],
dim=2048,
num_codebooks=1,
keep_num_codebooks_dim=None,
scale=None,
allowed_dtypes=['float32', 'float64', 'bfloat16'],
channel_first=False,
projection_has_bias=True,
return_indices=True,
force_quantization_f32=True,
use_rms=False
),
dim=2048,
ff_dim=8192,
input_dim=32
)
resynthesizer_config=TransformerVAE.Config(
io_config=GaussianMixtureIOLayer.Config(
latent_dim=32,
dim=4096,
num_components=8,
),
stack_config=Stack.Config(
layers=8,
dim=4096,
seq_len=8192,
n_head=16,
ff_dim=11008,
kv_heads=16,
eps=1e-5,
theta=10_000
),
quantizer_config=quantizer_config,
plex_layer=None,
plex_roll=1,
split=is_split,
from_pretrained=checkpoints[0],
)
return HertzDevModel.Config(
dim=4096,
vocab_size=32_768,
stack_config=Stack.Config(
layers=32,
dim=4096,
seq_len=2048,
n_head=32,
ff_dim=None,
kv_heads=None,
eps=1e-5,
theta=10_000,
),
quantizer_config=quantizer_config,
resynthesizer_config=resynthesizer_config,
split=is_split,
from_pretrained=checkpoints[1],
) |