Spaces:
Runtime error
Runtime error
File size: 2,781 Bytes
824afbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from dataclasses import dataclass
from typing import TypeVar, Generic, Type, Optional
from functools import wraps
import time
import random
import torch as T
import torch.nn as nn
# @TODO: remove si_module from codebase
# we use this in our research codebase to make modules from callable configs
si_module_TpV = TypeVar('si_module_TpV')
def si_module(cls: Type[si_module_TpV]) -> Type[si_module_TpV]:
if not hasattr(cls, 'Config') or not isinstance(cls.Config, type):
class Config:
pass
cls.Config = Config
cls.Config = dataclass(cls.Config)
class ConfigWrapper(cls.Config, Generic[si_module_TpV]):
def __call__(self, *args, **kwargs) -> si_module_TpV:
if len(kwargs) > 0:
config_dict = {field.name: getattr(self, field.name) for field in self.__dataclass_fields__.values()}
config_dict.update(kwargs)
new_config = type(self)(**config_dict)
return cls(new_config)
else:
return cls(self, *args)
ConfigWrapper.__module__ = cls.__module__
ConfigWrapper.__name__ = f"{cls.__name__}Config"
ConfigWrapper.__qualname__ = f"{cls.__qualname__}.Config"
cls.Config = ConfigWrapper
original_init = cls.__init__
def new_init(self, *args, **kwargs):
self.c = next((arg for arg in args if isinstance(arg, cls.Config)), None) or next((arg for arg in kwargs.values() if isinstance(arg, cls.Config)), None)
original_init(self, *args, **kwargs)
self.register_buffer('_device_tracker', T.Tensor(), persistent=False)
cls.__init__ = new_init
@property
def device(self):
return self._device_tracker.device
@property
def dtype(self):
return self._device_tracker.dtype
cls.device = device
cls.dtype = dtype
return cls
def get_activation(nonlinear_activation, nonlinear_activation_params={}):
if hasattr(nn, nonlinear_activation):
return getattr(nn, nonlinear_activation)(**nonlinear_activation_params)
else:
raise NotImplementedError(f"Activation {nonlinear_activation} not found in torch.nn")
def exists(v):
return v is not None
def isnt(v):
return not exists(v)
def truthyexists(v):
return exists(v) and v is not False
def truthyattr(obj, attr):
return hasattr(obj, attr) and truthyexists(getattr(obj, attr))
defaultT = TypeVar('defaultT')
def default(*args: Optional[defaultT]) -> Optional[defaultT]:
for arg in args:
if exists(arg):
return arg
return None
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
|