Spaces:
Sleeping
Sleeping
import io | |
import json | |
import os | |
import requests | |
import urllib | |
import gradio as gr | |
import numpy as np | |
from scipy.io import wavfile | |
base_url = "https://api.sandbox.deepgram.com/tts" | |
token_str = os.environ['DG_TOKEN'] | |
def tts_fn(text, prompt_audio, prompt_seconds, inference_steps, inference_temperature, pitch_steps): | |
texts = [text] | |
sr = prompt_audio[0] | |
prompt_audio = np.reshape(prompt_audio[1], (1, 1, -1)).astype(np.float32, order='C') / 32768.0 | |
params={'synthesize': 'true', 'pitch_steps': int(pitch_steps), 'soundstorm_steps': inference_steps, 'temperature': inference_temperature, 'prompt_seconds': prompt_seconds} | |
files=[('texts', ('texts', json.dumps(texts), 'application/json')), ('prompt_audio', ('prompt_audio', json.dumps(prompt_audio.tolist()), 'application/json'))] | |
response = requests.post(base_url, files=files, params=params, headers={'Authorization': f'Token {token_str}'}).json() | |
try: | |
sample_rate = int(response['results'][0]['sample_rate']) | |
audio = (np.array(response['results'][0]['audio']).transpose() / 1.414 * 32767).astype(np.int16) | |
except Exception: | |
print(response) | |
return (sample_rate, audio) | |
demo_files = ['demo_files/man.wav', 'demo_files/woman.wav', 'demo_files/man_2.wav', 'demo_files/woman_2.wav', 'demo_files/man_3.wav', 'demo_files/woman_3.wav', 'demo_files/woman_4.wav', 'demo_files/meditation.wav'] | |
app = gr.Blocks() | |
with app: | |
with gr.Tab("TTS MVP"): | |
with gr.Row(): | |
with gr.Column(): | |
pangram = "The beige hue on the waters of the loch impressed all, including the French queen, before she heard that symphony again, just as young Arthur wanted." | |
cherry = "Your request has been processed and the audio is ready for playback." | |
textbox = gr.TextArea(label="Text", placeholder="Type a sentence here", value=cherry) | |
prompt_audio = gr.Audio(label="Prompt Audio", source='upload') | |
examples = gr.Examples(label='Sample Speakers', examples=demo_files, inputs=prompt_audio) | |
# speed = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Speed") | |
# variability = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Variability") | |
inference_steps = gr.Slider(minimum=1, maximum=32, value=1, step=1, label="Inference Steps: quality vs latency tradeoff. Results are sometimes unstable for values >1.") | |
inference_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Temperature: fidelity vs variability tradeoff") | |
prompt_seconds = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=1.0, label="Use first N seconds of prompt audio") | |
pitch_steps = gr.Slider(minimum=-24, maximum=24, value=0, step=1, label="Pitch Steps: 12 to an octave") | |
with gr.Column(): | |
audio_output = gr.Audio(label="Output Audio", elem_id='tts-audio') | |
btn = gr.Button("Generate") | |
btn.click(tts_fn, inputs=[textbox, prompt_audio, prompt_seconds, inference_steps, inference_temperature, pitch_steps], outputs=[audio_output]) | |
app.launch() |