stevenhillis commited on
Commit
cb2b2ed
1 Parent(s): 1a5fb77

Configurable prompt seconds

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -8,13 +8,13 @@ import numpy as np
8
 
9
  base_url = "https://api.sandbox.deepgram.com/nlu"
10
  token_str = os.environ['DG_TOKEN']
11
- def tts_fn(text, prompt_audio, pitch_steps, inference_steps, inference_temperature):
12
  texts = [text]
13
  prompt_audio = np.reshape(prompt_audio[1], (1, 1, -1)).astype(np.float32, order='C') / 32768.0
14
  response = requests.post(
15
  f'{base_url}',
16
  files=[('texts', ('texts', json.dumps(texts), 'application/json')), ('prompt_audio', ('prompt_audio', json.dumps(prompt_audio.tolist()), 'application/json'))],
17
- params={'synthesize': 'true', 'pitch_steps': int(pitch_steps), 'soundstorm_steps': inference_steps, 'temperature': inference_temperature},
18
  headers={
19
  'Authorization': f'Token {token_str}'
20
  },
@@ -37,16 +37,17 @@ with app:
37
  pangram = "The beige hue on the waters of the loch impressed all, including the French queen, before she heard that symphony again, just as young Arthur wanted."
38
  cherry = "Your request has been processed and the audio is ready for playback."
39
  textbox = gr.TextArea(label="Text", placeholder="Type a sentence here", value=cherry)
40
- prompt_audio = gr.Audio(label="Prompt Audio (first 3 seconds of selection)", source='upload')
41
  examples = gr.Examples(label='Sample Speakers', examples=demo_files, inputs=prompt_audio)
42
  # speed = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Speed")
43
- pitch_steps = gr.Slider(minimum=-24, maximum=24, value=0, step=1, label="Pitch Steps: 12 to an octave")
44
  # variability = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Variability")
45
  inference_steps = gr.Slider(minimum=1, maximum=32, value=1, step=1, label="Inference Steps: quality vs latency tradeoff. Results are sometimes unstable for values >1.")
46
  inference_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Temperature: fidelity vs variability tradeoff")
 
 
47
 
48
  with gr.Column():
49
  audio_output = gr.Audio(label="Output Audio", elem_id='tts-audio')
50
  btn = gr.Button("Generate")
51
- btn.click(tts_fn, inputs=[textbox, prompt_audio, pitch_steps, inference_steps, inference_temperature], outputs=[audio_output])
52
  app.launch()
 
8
 
9
  base_url = "https://api.sandbox.deepgram.com/nlu"
10
  token_str = os.environ['DG_TOKEN']
11
+ def tts_fn(text, prompt_audio, prompt_seconds, inference_steps, inference_temperature, pitch_steps):
12
  texts = [text]
13
  prompt_audio = np.reshape(prompt_audio[1], (1, 1, -1)).astype(np.float32, order='C') / 32768.0
14
  response = requests.post(
15
  f'{base_url}',
16
  files=[('texts', ('texts', json.dumps(texts), 'application/json')), ('prompt_audio', ('prompt_audio', json.dumps(prompt_audio.tolist()), 'application/json'))],
17
+ params={'synthesize': 'true', 'pitch_steps': int(pitch_steps), 'soundstorm_steps': inference_steps, 'temperature': inference_temperature, 'prompt_seconds': prompt_seconds},
18
  headers={
19
  'Authorization': f'Token {token_str}'
20
  },
 
37
  pangram = "The beige hue on the waters of the loch impressed all, including the French queen, before she heard that symphony again, just as young Arthur wanted."
38
  cherry = "Your request has been processed and the audio is ready for playback."
39
  textbox = gr.TextArea(label="Text", placeholder="Type a sentence here", value=cherry)
40
+ prompt_audio = gr.Audio(label="Prompt Audio", source='upload')
41
  examples = gr.Examples(label='Sample Speakers', examples=demo_files, inputs=prompt_audio)
42
  # speed = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Speed")
 
43
  # variability = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Variability")
44
  inference_steps = gr.Slider(minimum=1, maximum=32, value=1, step=1, label="Inference Steps: quality vs latency tradeoff. Results are sometimes unstable for values >1.")
45
  inference_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Temperature: fidelity vs variability tradeoff")
46
+ prompt_seconds = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=1.0, label="Use first N seconds of prompt audio")
47
+ pitch_steps = gr.Slider(minimum=-24, maximum=24, value=0, step=1, label="Pitch Steps: 12 to an octave")
48
 
49
  with gr.Column():
50
  audio_output = gr.Audio(label="Output Audio", elem_id='tts-audio')
51
  btn = gr.Button("Generate")
52
+ btn.click(tts_fn, inputs=[textbox, prompt_audio, prompt_seconds, inference_steps, inference_temperature, pitch_steps], outputs=[audio_output])
53
  app.launch()