import io import json import os import requests import urllib import gradio as gr import numpy as np from scipy.io import wavfile base_url = "https://api.sandbox.deepgram.com/tts" token_str = os.environ['DG_TOKEN'] def tts_fn(text, prompt_audio, prompt_seconds, inference_steps, inference_temperature, pitch_steps): texts = [text] sr = prompt_audio[0] prompt_audio = np.reshape(prompt_audio[1], (1, 1, -1)).astype(np.float32, order='C') / 32768.0 params={'synthesize': 'true', 'pitch_steps': int(pitch_steps), 'soundstorm_steps': inference_steps, 'temperature': inference_temperature, 'prompt_seconds': prompt_seconds} files=[('texts', ('texts', json.dumps(texts), 'application/json')), ('prompt_audio', ('prompt_audio', json.dumps(prompt_audio.tolist()), 'application/json'))] response = requests.post(base_url, files=files, params=params, headers={'Authorization': f'Token {token_str}'}).json() try: sample_rate = int(response['results'][0]['sample_rate']) audio = (np.array(response['results'][0]['audio']).transpose() / 1.414 * 32767).astype(np.int16) except Exception: print(response) return (sample_rate, audio) demo_files = ['demo_files/man.wav', 'demo_files/woman.wav', 'demo_files/man_2.wav', 'demo_files/woman_2.wav', 'demo_files/man_3.wav', 'demo_files/woman_3.wav', 'demo_files/woman_4.wav', 'demo_files/meditation.wav'] app = gr.Blocks() with app: with gr.Tab("TTS MVP"): with gr.Row(): with gr.Column(): pangram = "The beige hue on the waters of the loch impressed all, including the French queen, before she heard that symphony again, just as young Arthur wanted." cherry = "Your request has been processed and the audio is ready for playback." textbox = gr.TextArea(label="Text", placeholder="Type a sentence here", value=cherry) prompt_audio = gr.Audio(label="Prompt Audio", source='upload') examples = gr.Examples(label='Sample Speakers', examples=demo_files, inputs=prompt_audio) # speed = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Speed") # variability = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Variability") inference_steps = gr.Slider(minimum=1, maximum=32, value=1, step=1, label="Inference Steps: quality vs latency tradeoff. Results are sometimes unstable for values >1.") inference_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Temperature: fidelity vs variability tradeoff") prompt_seconds = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=1.0, label="Use first N seconds of prompt audio") pitch_steps = gr.Slider(minimum=-24, maximum=24, value=0, step=1, label="Pitch Steps: 12 to an octave") with gr.Column(): audio_output = gr.Audio(label="Output Audio", elem_id='tts-audio') btn = gr.Button("Generate") btn.click(tts_fn, inputs=[textbox, prompt_audio, prompt_seconds, inference_steps, inference_temperature, pitch_steps], outputs=[audio_output]) app.launch()