stmnk commited on
Commit
752a5fa
·
1 Parent(s): 3dc8b58

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -37
app.py CHANGED
@@ -37,40 +37,3 @@ if st.button('Run keyword search'):
37
  else:
38
  st.write('Write a query to submit your keyword search'); st.stop()
39
 
40
-
41
- # if "answer" in qa_result.keys():
42
- # answer_span, answer_score = qa_result["answer"], qa_result["score"]
43
- # st.write(f'Answer: **{answer_span}**')
44
- # start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph))
45
- # answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
46
- # st.write(f'Answer context (and score): ... _{answer_context}_ ... (score: {format(answer_score, ".3f")})')
47
-
48
- # question_similarity = [ (hit['_score'], hit['_source']['content'][:200])
49
- # for hit in result_first_two_hits ] # print(question_similarity)
50
-
51
- # top_hit = result['hits']['hits'][0]
52
- # context = top_hit['_source']['content']
53
- # # context = r" Extractive Question Answering is the task of extracting
54
- # # an answer from a text given a question. An example of a question
55
- # # answering dataset is the SQuAD dataset, which is entirely based
56
- # # on that task. If you would like to fine-tune a model on a SQuAD task,
57
- # # you may leverage the `examples/pytorch/question-answering/run_squad.py` script."
58
- # question = input # "What is extractive question answering?"
59
- # # "What is a good example of a question answering dataset?"
60
- # print(question)
61
- # context = context[:5000]
62
- # print(context)
63
- # try:
64
- # qa_result = pipe_exqa(question=question, context=context)
65
- # except Exception as e:
66
- # return {"output": str(e)}
67
-
68
- # return {"output": str(qa_result)}
69
-
70
- # answer = qa_result['answer']
71
- # score = round(qa_result['score'], 4)
72
- # span = f"start: {qa_result['start']}, end: {qa_result['end']}"
73
- # # st.write(answer); st.write(f"score: {score}"); st.write(f"span: {span}")
74
- # output = f"{str(answer)} \n {str(score)} \n {str(span)}"
75
-
76
- # return {"output": output} or {"output": str(question_similarity)} or result or {"Hello": "World!"}
 
37
  else:
38
  st.write('Write a query to submit your keyword search'); st.stop()
39