Spaces:
Runtime error
Runtime error
storresbusquets
commited on
Commit
·
038645c
1
Parent(s):
344c4fa
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
import yake
|
5 |
-
from transformers import pipeline
|
6 |
|
7 |
class GradioInference():
|
8 |
def __init__(self):
|
@@ -12,12 +12,12 @@ class GradioInference():
|
|
12 |
self.loaded_model = whisper.load_model(self.current_size)
|
13 |
self.yt = None
|
14 |
|
15 |
-
# Initialize YAKE keyword extractor
|
16 |
-
self.keyword_extractor = yake.KeywordExtractor(lan="en", n=3, dedupLim=0.9, dedupFunc="seqm", windowsSize=1, top=5, features=None)
|
17 |
-
|
18 |
# Initialize Facebook/BART-Large-CNN summarizer
|
19 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
20 |
|
|
|
|
|
|
|
21 |
def __call__(self, link, lang, size):
|
22 |
if self.yt is None:
|
23 |
self.yt = YouTube(link)
|
@@ -34,10 +34,17 @@ class GradioInference():
|
|
34 |
# Perform summarization on the transcription
|
35 |
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
return results["text"], transcription_summary[0]["summary_text"],
|
41 |
|
42 |
def populate_metadata(self, link):
|
43 |
self.yt = YouTube(link)
|
@@ -46,7 +53,7 @@ class GradioInference():
|
|
46 |
|
47 |
gio = GradioInference()
|
48 |
title = "Youtube Insights"
|
49 |
-
description = "
|
50 |
|
51 |
block = gr.Blocks()
|
52 |
with block:
|
@@ -57,7 +64,7 @@ with block:
|
|
57 |
<h1>Youtube Insights</h1>
|
58 |
</div>
|
59 |
<p style="margin-bottom: 10px; font-size: 94%">
|
60 |
-
|
61 |
</p>
|
62 |
</div>
|
63 |
"""
|
@@ -67,7 +74,7 @@ with block:
|
|
67 |
with gr.Row().style(equal_height=True):
|
68 |
sz = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
69 |
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
70 |
-
link = gr.Textbox(label="YouTube
|
71 |
title = gr.Label(label="Video Title")
|
72 |
with gr.Row().style(equal_height=True):
|
73 |
img = gr.Image(label="Thumbnail")
|
@@ -76,7 +83,7 @@ with block:
|
|
76 |
summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
|
77 |
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
|
78 |
with gr.Row().style(equal_height=True):
|
79 |
-
btn = gr.Button("
|
80 |
btn.click(gio, inputs=[link, lang, sz], outputs=[text, summary, keywords])
|
81 |
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
82 |
|
|
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
import yake
|
5 |
+
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
6 |
|
7 |
class GradioInference():
|
8 |
def __init__(self):
|
|
|
12 |
self.loaded_model = whisper.load_model(self.current_size)
|
13 |
self.yt = None
|
14 |
|
|
|
|
|
|
|
15 |
# Initialize Facebook/BART-Large-CNN summarizer
|
16 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
|
18 |
+
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
19 |
+
self.tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")
|
20 |
+
|
21 |
def __call__(self, link, lang, size):
|
22 |
if self.yt is None:
|
23 |
self.yt = YouTube(link)
|
|
|
34 |
# Perform summarization on the transcription
|
35 |
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
36 |
|
37 |
+
task_prefix = "Keywords: "
|
38 |
+
|
39 |
+
input_sequence = task_prefix + transcription
|
40 |
+
input_ids = tokenizer(
|
41 |
+
input_sequence, return_tensors="pt", truncation=False,
|
42 |
+
).input_ids
|
43 |
+
output = keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
|
44 |
+
predicted = tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
+
keywords = [x.strip() for x in predicted.split(',') if x.strip()]
|
46 |
|
47 |
+
return results["text"], transcription_summary[0]["summary_text"], keywords
|
48 |
|
49 |
def populate_metadata(self, link):
|
50 |
self.yt = YouTube(link)
|
|
|
53 |
|
54 |
gio = GradioInference()
|
55 |
title = "Youtube Insights"
|
56 |
+
description = "Your AI-powered Video Analytics"
|
57 |
|
58 |
block = gr.Blocks()
|
59 |
with block:
|
|
|
64 |
<h1>Youtube Insights</h1>
|
65 |
</div>
|
66 |
<p style="margin-bottom: 10px; font-size: 94%">
|
67 |
+
Your AI-powered Video Analytics
|
68 |
</p>
|
69 |
</div>
|
70 |
"""
|
|
|
74 |
with gr.Row().style(equal_height=True):
|
75 |
sz = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
76 |
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
77 |
+
link = gr.Textbox(label="YouTube URL")
|
78 |
title = gr.Label(label="Video Title")
|
79 |
with gr.Row().style(equal_height=True):
|
80 |
img = gr.Image(label="Thumbnail")
|
|
|
83 |
summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
|
84 |
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
|
85 |
with gr.Row().style(equal_height=True):
|
86 |
+
btn = gr.Button("Get Video Insights")
|
87 |
btn.click(gio, inputs=[link, lang, sz], outputs=[text, summary, keywords])
|
88 |
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
89 |
|