storresbusquets commited on
Commit
0ec0587
·
1 Parent(s): efa520c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -18
app.py CHANGED
@@ -43,6 +43,21 @@ class GradioInference:
43
  self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
44
  self.model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
 
48
  def __call__(self, link, lang, size, progress=gr.Progress()):
@@ -208,24 +223,7 @@ class GradioInference:
208
  ########################## PRUEBA LLM #################################
209
  from langchain import HuggingFacePipeline, PromptTemplate, LLMChain
210
 
211
- llm_model = "tiiuae/falcon-7b-instruct"
212
-
213
- llm_tokenizer = AutoTokenizer.from_pretrained(llm_model)
214
-
215
- pipeline = pipeline(
216
- "text-generation", #task
217
- model=llm_model,
218
- tokenizer=llm_tokenizer,
219
- torch_dtype=torch.bfloat16,
220
- trust_remote_code=True,
221
- device_map="auto",
222
- max_length=1000,
223
- do_sample=True,
224
- top_k=10,
225
- num_return_sequences=1,
226
- eos_token_id=tokenizer.eos_token_id
227
- )
228
- llm = HuggingFacePipeline(pipeline = pipeline, model_kwargs = {'temperature':0})
229
 
230
  template = """
231
  Write a concise summary of the following text delimited by triple backquotes.
 
43
  self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
44
  self.model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
45
 
46
+ self.llm_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
47
+
48
+ self.pipeline = pipeline(
49
+ "text-generation", #task
50
+ model="tiiuae/falcon-7b-instruct",
51
+ tokenizer=self.llm_tokenizer,
52
+ torch_dtype=torch.bfloat16,
53
+ trust_remote_code=True,
54
+ device_map="auto",
55
+ max_length=1000,
56
+ do_sample=True,
57
+ top_k=10,
58
+ num_return_sequences=1,
59
+ eos_token_id=tokenizer.eos_token_id
60
+ )
61
 
62
 
63
  def __call__(self, link, lang, size, progress=gr.Progress()):
 
223
  ########################## PRUEBA LLM #################################
224
  from langchain import HuggingFacePipeline, PromptTemplate, LLMChain
225
 
226
+ llm = HuggingFacePipeline(pipeline = self.pipeline, model_kwargs = {'temperature':0})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
  template = """
229
  Write a concise summary of the following text delimited by triple backquotes.