Spaces:
Runtime error
Runtime error
storresbusquets
commited on
Commit
·
4c634f2
1
Parent(s):
b397f13
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,57 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
-
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
|
|
5 |
|
6 |
-
class GradioInference
|
7 |
def __init__(self):
|
|
|
|
|
8 |
self.sizes = list(whisper._MODELS.keys())
|
|
|
|
|
9 |
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
|
|
|
|
10 |
self.current_size = "base"
|
|
|
|
|
11 |
self.loaded_model = whisper.load_model(self.current_size)
|
|
|
|
|
12 |
self.yt = None
|
|
|
|
|
13 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
14 |
-
|
15 |
# Initialize VoiceLabT5 model and tokenizer
|
16 |
-
self.keyword_model = T5ForConditionalGeneration.from_pretrained(
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Sentiment Classifier
|
20 |
self.classifier = pipeline("text-classification")
|
21 |
|
22 |
def __call__(self, link, lang, size):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if self.yt is None:
|
24 |
self.yt = YouTube(link)
|
|
|
|
|
25 |
path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")
|
26 |
|
27 |
if lang == "none":
|
@@ -30,33 +60,66 @@ class GradioInference():
|
|
30 |
if size != self.current_size:
|
31 |
self.loaded_model = whisper.load_model(size)
|
32 |
self.current_size = size
|
33 |
-
|
|
|
34 |
results = self.loaded_model.transcribe(path, language=lang)
|
35 |
-
|
36 |
# Perform summarization on the transcription
|
37 |
-
transcription_summary = self.summarizer(
|
|
|
|
|
38 |
|
39 |
# Extract keywords using VoiceLabT5
|
40 |
task_prefix = "Keywords: "
|
41 |
input_sequence = task_prefix + results["text"]
|
42 |
-
input_ids = self.keyword_tokenizer(
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
-
keywords = [x.strip() for x in predicted.split(
|
46 |
|
|
|
47 |
label = self.classifier(results["text"])[0]["label"]
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def populate_metadata(self, link):
|
|
|
|
|
|
|
|
|
|
|
52 |
self.yt = YouTube(link)
|
53 |
return self.yt.thumbnail_url, self.yt.title
|
54 |
|
55 |
-
|
56 |
def from_audio_input(self, lang, size, audio_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
if lang == "none":
|
58 |
lang = None
|
59 |
-
|
60 |
if size != self.current_size:
|
61 |
self.loaded_model = whisper.load_model(size)
|
62 |
self.current_size = size
|
@@ -64,19 +127,38 @@ class GradioInference():
|
|
64 |
results = self.loaded_model.transcribe(audio_file, language=lang)
|
65 |
|
66 |
# Perform summarization on the transcription
|
67 |
-
transcription_summary = self.summarizer(
|
|
|
|
|
68 |
|
69 |
# Extract keywords using VoiceLabT5
|
70 |
task_prefix = "Keywords: "
|
71 |
input_sequence = task_prefix + results["text"]
|
72 |
-
input_ids = self.keyword_tokenizer(
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
75 |
-
keywords = [x.strip() for x in predicted.split(
|
76 |
|
|
|
77 |
label = self.classifier(results["text"])[0]["label"]
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
gio = GradioInference()
|
@@ -101,56 +183,106 @@ with block as demo:
|
|
101 |
with gr.Tab("From YouTube"):
|
102 |
with gr.Box():
|
103 |
with gr.Row().style(equal_height=True):
|
104 |
-
size = gr.Dropdown(
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
title = gr.Label(label="Video Title")
|
108 |
with gr.Row().style(equal_height=True):
|
109 |
img = gr.Image(label="Thumbnail")
|
110 |
-
text = gr.Textbox(
|
|
|
|
|
|
|
|
|
111 |
with gr.Row().style(equal_height=True):
|
112 |
-
summary = gr.Textbox(
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
label = gr.Label(label="Sentiment Analysis")
|
|
|
115 |
with gr.Row().style(equal_height=True):
|
116 |
-
clear = gr.ClearButton(
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
with gr.Tab("From Audio file"):
|
122 |
with gr.Box():
|
123 |
with gr.Row().style(equal_height=True):
|
124 |
-
size = gr.Dropdown(
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
audio_file = gr.Audio(type="filepath")
|
127 |
with gr.Row().style(equal_height=True):
|
128 |
-
text = gr.Textbox(
|
|
|
|
|
|
|
|
|
129 |
with gr.Row().style(equal_height=True):
|
130 |
-
summary = gr.Textbox(
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
label = gr.Label(label="Sentiment Analysis")
|
|
|
133 |
with gr.Row().style(equal_height=True):
|
134 |
-
clear = gr.ClearButton([text], scale=1)
|
135 |
-
btn = gr.Button(
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
with block:
|
|
|
|
|
|
|
140 |
gr.Markdown("About the app:")
|
141 |
-
|
142 |
with gr.Accordion("What is YouTube Insights?", open=False):
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
with gr.Accordion("How does it work?", open=False):
|
146 |
-
|
|
|
|
|
147 |
|
148 |
-
gr.HTML(
|
|
|
149 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
150 |
<p style="margin-bottom: 10px; font-size: 96%">
|
151 |
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
|
152 |
</p>
|
153 |
</div>
|
154 |
-
"""
|
|
|
155 |
|
156 |
-
demo.launch()
|
|
|
1 |
+
# Imports
|
2 |
import gradio as gr
|
3 |
import whisper
|
4 |
from pytube import YouTube
|
5 |
+
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
6 |
+
from wordcloud import WordCloud
|
7 |
|
8 |
+
class GradioInference:
|
9 |
def __init__(self):
|
10 |
+
|
11 |
+
# OpenAI's Whisper model sizes
|
12 |
self.sizes = list(whisper._MODELS.keys())
|
13 |
+
|
14 |
+
# Whisper's available languages for ASR
|
15 |
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
16 |
+
|
17 |
+
# Default size
|
18 |
self.current_size = "base"
|
19 |
+
|
20 |
+
# Default model size
|
21 |
self.loaded_model = whisper.load_model(self.current_size)
|
22 |
+
|
23 |
+
# Initialize Pytube Object
|
24 |
self.yt = None
|
25 |
+
|
26 |
+
# Initialize summary model
|
27 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
28 |
+
|
29 |
# Initialize VoiceLabT5 model and tokenizer
|
30 |
+
self.keyword_model = T5ForConditionalGeneration.from_pretrained(
|
31 |
+
"Voicelab/vlt5-base-keywords"
|
32 |
+
)
|
33 |
+
self.keyword_tokenizer = T5Tokenizer.from_pretrained(
|
34 |
+
"Voicelab/vlt5-base-keywords"
|
35 |
+
)
|
36 |
|
37 |
# Sentiment Classifier
|
38 |
self.classifier = pipeline("text-classification")
|
39 |
|
40 |
def __call__(self, link, lang, size):
|
41 |
+
"""
|
42 |
+
Call the Gradio Inference python class.
|
43 |
+
This class gets access to a YouTube video using python's library Pytube and downloads its audio.
|
44 |
+
Then it uses the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text).
|
45 |
+
Once the function has the transcription of the video it proccess it to obtain:
|
46 |
+
- Summary: using Facebook's BART transformer.
|
47 |
+
- KeyWords: using VoiceLabT5 keyword extractor.
|
48 |
+
- Sentiment Analysis: using Hugging Face's default sentiment classifier
|
49 |
+
- WordCloud: using the wordcloud python library.
|
50 |
+
"""
|
51 |
if self.yt is None:
|
52 |
self.yt = YouTube(link)
|
53 |
+
|
54 |
+
# Pytube library to access to YouTube audio stream
|
55 |
path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")
|
56 |
|
57 |
if lang == "none":
|
|
|
60 |
if size != self.current_size:
|
61 |
self.loaded_model = whisper.load_model(size)
|
62 |
self.current_size = size
|
63 |
+
|
64 |
+
# Transcribe the audio extracted from pytube
|
65 |
results = self.loaded_model.transcribe(path, language=lang)
|
66 |
+
|
67 |
# Perform summarization on the transcription
|
68 |
+
transcription_summary = self.summarizer(
|
69 |
+
results["text"], max_length=512, min_length=30, do_sample=False
|
70 |
+
)
|
71 |
|
72 |
# Extract keywords using VoiceLabT5
|
73 |
task_prefix = "Keywords: "
|
74 |
input_sequence = task_prefix + results["text"]
|
75 |
+
input_ids = self.keyword_tokenizer(
|
76 |
+
input_sequence, return_tensors="pt", truncation=False
|
77 |
+
).input_ids
|
78 |
+
output = self.keyword_model.generate(
|
79 |
+
input_ids, no_repeat_ngram_size=3, num_beams=4
|
80 |
+
)
|
81 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
82 |
+
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
83 |
|
84 |
+
# Sentiment label
|
85 |
label = self.classifier(results["text"])[0]["label"]
|
86 |
|
87 |
+
# Generate WordCloud object
|
88 |
+
wordcloud = WordCloud().generate(results["text"])
|
89 |
+
|
90 |
+
# WordCloud image to display
|
91 |
+
wordcloud_image = wordcloud.to_image()
|
92 |
+
|
93 |
+
return (
|
94 |
+
results["text"],
|
95 |
+
transcription_summary[0]["summary_text"],
|
96 |
+
keywords,
|
97 |
+
label,
|
98 |
+
wordcloud_image,
|
99 |
+
)
|
100 |
|
101 |
def populate_metadata(self, link):
|
102 |
+
"""
|
103 |
+
Access to the YouTube video title and thumbnail image to further display it
|
104 |
+
params:
|
105 |
+
- link: a YouTube URL.
|
106 |
+
"""
|
107 |
self.yt = YouTube(link)
|
108 |
return self.yt.thumbnail_url, self.yt.title
|
109 |
|
|
|
110 |
def from_audio_input(self, lang, size, audio_file):
|
111 |
+
"""
|
112 |
+
Call the Gradio Inference python class.
|
113 |
+
Uses it directly the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text).
|
114 |
+
Once the function has the transcription of the video it proccess it to obtain:
|
115 |
+
- Summary: using Facebook's BART transformer.
|
116 |
+
- KeyWords: using VoiceLabT5 keyword extractor.
|
117 |
+
- Sentiment Analysis: using Hugging Face's default sentiment classifier
|
118 |
+
- WordCloud: using the wordcloud python library.
|
119 |
+
"""
|
120 |
if lang == "none":
|
121 |
lang = None
|
122 |
+
|
123 |
if size != self.current_size:
|
124 |
self.loaded_model = whisper.load_model(size)
|
125 |
self.current_size = size
|
|
|
127 |
results = self.loaded_model.transcribe(audio_file, language=lang)
|
128 |
|
129 |
# Perform summarization on the transcription
|
130 |
+
transcription_summary = self.summarizer(
|
131 |
+
results["text"], max_length=512, min_length=30, do_sample=False
|
132 |
+
)
|
133 |
|
134 |
# Extract keywords using VoiceLabT5
|
135 |
task_prefix = "Keywords: "
|
136 |
input_sequence = task_prefix + results["text"]
|
137 |
+
input_ids = self.keyword_tokenizer(
|
138 |
+
input_sequence, return_tensors="pt", truncation=False
|
139 |
+
).input_ids
|
140 |
+
output = self.keyword_model.generate(
|
141 |
+
input_ids, no_repeat_ngram_size=3, num_beams=4
|
142 |
+
)
|
143 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
144 |
+
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
145 |
|
146 |
+
# Sentiment label
|
147 |
label = self.classifier(results["text"])[0]["label"]
|
148 |
|
149 |
+
# WordCloud object
|
150 |
+
wordcloud = WordCloud().generate(
|
151 |
+
results["text"]
|
152 |
+
)
|
153 |
+
wordcloud_image = wordcloud.to_image()
|
154 |
+
|
155 |
+
return (
|
156 |
+
results["text"],
|
157 |
+
transcription_summary[0]["summary_text"],
|
158 |
+
keywords,
|
159 |
+
label,
|
160 |
+
wordcloud_image,
|
161 |
+
)
|
162 |
|
163 |
|
164 |
gio = GradioInference()
|
|
|
183 |
with gr.Tab("From YouTube"):
|
184 |
with gr.Box():
|
185 |
with gr.Row().style(equal_height=True):
|
186 |
+
size = gr.Dropdown(
|
187 |
+
label="Model Size", choices=gio.sizes, value="base"
|
188 |
+
)
|
189 |
+
lang = gr.Dropdown(
|
190 |
+
label="Language (Optional)", choices=gio.langs, value="none"
|
191 |
+
)
|
192 |
+
link = gr.Textbox(
|
193 |
+
label="YouTube Link", placeholder="Enter YouTube link..."
|
194 |
+
)
|
195 |
title = gr.Label(label="Video Title")
|
196 |
with gr.Row().style(equal_height=True):
|
197 |
img = gr.Image(label="Thumbnail")
|
198 |
+
text = gr.Textbox(
|
199 |
+
label="Transcription",
|
200 |
+
placeholder="Transcription Output...",
|
201 |
+
lines=10,
|
202 |
+
).style(show_copy_button=True, container=True)
|
203 |
with gr.Row().style(equal_height=True):
|
204 |
+
summary = gr.Textbox(
|
205 |
+
label="Summary", placeholder="Summary Output...", lines=5
|
206 |
+
).style(show_copy_button=True, container=True)
|
207 |
+
keywords = gr.Textbox(
|
208 |
+
label="Keywords", placeholder="Keywords Output...", lines=5
|
209 |
+
).style(show_copy_button=True, container=True)
|
210 |
label = gr.Label(label="Sentiment Analysis")
|
211 |
+
wordcloud_image = gr.Image()
|
212 |
with gr.Row().style(equal_height=True):
|
213 |
+
clear = gr.ClearButton(
|
214 |
+
[link, title, img, text, summary, keywords, label, wordcloud_image], scale=1
|
215 |
+
)
|
216 |
+
btn = gr.Button("Get video insights", variant="primary", scale=1)
|
217 |
+
btn.click(
|
218 |
+
gio,
|
219 |
+
inputs=[link, lang, size],
|
220 |
+
outputs=[text, summary, keywords, label, wordcloud_image],
|
221 |
+
)
|
222 |
+
if link:
|
223 |
+
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
224 |
|
225 |
with gr.Tab("From Audio file"):
|
226 |
with gr.Box():
|
227 |
with gr.Row().style(equal_height=True):
|
228 |
+
size = gr.Dropdown(
|
229 |
+
label="Model Size", choices=gio.sizes, value="base"
|
230 |
+
)
|
231 |
+
lang = gr.Dropdown(
|
232 |
+
label="Language (Optional)", choices=gio.langs, value="none"
|
233 |
+
)
|
234 |
audio_file = gr.Audio(type="filepath")
|
235 |
with gr.Row().style(equal_height=True):
|
236 |
+
text = gr.Textbox(
|
237 |
+
label="Transcription",
|
238 |
+
placeholder="Transcription Output...",
|
239 |
+
lines=10,
|
240 |
+
).style(show_copy_button=True, container=False)
|
241 |
with gr.Row().style(equal_height=True):
|
242 |
+
summary = gr.Textbox(
|
243 |
+
label="Summary", placeholder="Summary Output", lines=5
|
244 |
+
)
|
245 |
+
keywords = gr.Textbox(
|
246 |
+
label="Keywords", placeholder="Keywords Output", lines=5
|
247 |
+
)
|
248 |
label = gr.Label(label="Sentiment Analysis")
|
249 |
+
wordcloud_image = gr.Image()
|
250 |
with gr.Row().style(equal_height=True):
|
251 |
+
clear = gr.ClearButton([audio_file,text, summary, keywords, label, wordcloud_image], scale=1)
|
252 |
+
btn = gr.Button(
|
253 |
+
"Get video insights", variant="primary", scale=1
|
254 |
+
)
|
255 |
+
btn.click(
|
256 |
+
gio.from_audio_input,
|
257 |
+
inputs=[lang, size, audio_file],
|
258 |
+
outputs=[text, summary, keywords, label, wordcloud_image],
|
259 |
+
)
|
260 |
+
|
261 |
|
262 |
with block:
|
263 |
+
gr.Markdown("### Video Examples")
|
264 |
+
gr.Examples(["https://www.youtube.com/shorts/xDNzz8yAH7I"], inputs=link)
|
265 |
+
|
266 |
gr.Markdown("About the app:")
|
267 |
+
|
268 |
with gr.Accordion("What is YouTube Insights?", open=False):
|
269 |
+
gr.Markdown(
|
270 |
+
"YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files."
|
271 |
+
)
|
272 |
+
|
273 |
with gr.Accordion("How does it work?", open=False):
|
274 |
+
gr.Markdown(
|
275 |
+
"Works by using OpenAI's Whisper, BART for summarization and VoiceLabT5 for Keyword Extraction."
|
276 |
+
)
|
277 |
|
278 |
+
gr.HTML(
|
279 |
+
"""
|
280 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
281 |
<p style="margin-bottom: 10px; font-size: 96%">
|
282 |
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
|
283 |
</p>
|
284 |
</div>
|
285 |
+
"""
|
286 |
+
)
|
287 |
|
288 |
+
demo.launch()
|