Spaces:
Runtime error
Runtime error
storresbusquets
commited on
Commit
·
5b575aa
1
Parent(s):
9e1df22
Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,7 @@ class GradioInference:
|
|
44 |
|
45 |
|
46 |
|
47 |
-
def __call__(self, link, lang, size):
|
48 |
"""
|
49 |
Call the Gradio Inference python class.
|
50 |
This class gets access to a YouTube video using python's library Pytube and downloads its audio.
|
@@ -55,6 +55,7 @@ class GradioInference:
|
|
55 |
- Sentiment Analysis: using Hugging Face's default sentiment classifier
|
56 |
- WordCloud: using the wordcloud python library.
|
57 |
"""
|
|
|
58 |
if self.yt is None:
|
59 |
self.yt = YouTube(link)
|
60 |
|
@@ -68,9 +69,11 @@ class GradioInference:
|
|
68 |
self.loaded_model = whisper.load_model(size)
|
69 |
self.current_size = size
|
70 |
|
|
|
71 |
# Transcribe the audio extracted from pytube
|
72 |
results = self.loaded_model.transcribe(path, language=lang)
|
73 |
|
|
|
74 |
# Perform summarization on the transcription
|
75 |
transcription_summary = self.summarizer(
|
76 |
results["text"], max_length=150, min_length=30, do_sample=False
|
@@ -101,7 +104,7 @@ class GradioInference:
|
|
101 |
)
|
102 |
#### Fin prueba
|
103 |
|
104 |
-
|
105 |
# Extract keywords using VoiceLabT5
|
106 |
task_prefix = "Keywords: "
|
107 |
input_sequence = task_prefix + results["text"]
|
@@ -114,9 +117,11 @@ class GradioInference:
|
|
114 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
115 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
116 |
|
|
|
117 |
# Sentiment label
|
118 |
label = self.classifier(summary)[0]["label"]
|
119 |
-
|
|
|
120 |
# Generate WordCloud object
|
121 |
wordcloud = WordCloud(colormap = "Oranges").generate(results["text"])
|
122 |
|
|
|
44 |
|
45 |
|
46 |
|
47 |
+
def __call__(self, link, lang, size, progress=gr.Progress()):
|
48 |
"""
|
49 |
Call the Gradio Inference python class.
|
50 |
This class gets access to a YouTube video using python's library Pytube and downloads its audio.
|
|
|
55 |
- Sentiment Analysis: using Hugging Face's default sentiment classifier
|
56 |
- WordCloud: using the wordcloud python library.
|
57 |
"""
|
58 |
+
progress(0, desc="Starting analysis")
|
59 |
if self.yt is None:
|
60 |
self.yt = YouTube(link)
|
61 |
|
|
|
69 |
self.loaded_model = whisper.load_model(size)
|
70 |
self.current_size = size
|
71 |
|
72 |
+
progress(0.20, desc="Transcribing")
|
73 |
# Transcribe the audio extracted from pytube
|
74 |
results = self.loaded_model.transcribe(path, language=lang)
|
75 |
|
76 |
+
progress(0.35, desc="Summarizing")
|
77 |
# Perform summarization on the transcription
|
78 |
transcription_summary = self.summarizer(
|
79 |
results["text"], max_length=150, min_length=30, do_sample=False
|
|
|
104 |
)
|
105 |
#### Fin prueba
|
106 |
|
107 |
+
progress(0.50, desc="Extracting Keywords")
|
108 |
# Extract keywords using VoiceLabT5
|
109 |
task_prefix = "Keywords: "
|
110 |
input_sequence = task_prefix + results["text"]
|
|
|
117 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
118 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
119 |
|
120 |
+
progress(0.75, desc="Extracting Sentiment")
|
121 |
# Sentiment label
|
122 |
label = self.classifier(summary)[0]["label"]
|
123 |
+
|
124 |
+
progress(0.90, desc="Generating Wordcloud")
|
125 |
# Generate WordCloud object
|
126 |
wordcloud = WordCloud(colormap = "Oranges").generate(results["text"])
|
127 |
|