Spaces:
Runtime error
Runtime error
Commit
·
a445c9d
1
Parent(s):
f357bf0
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,7 @@ class GradioInference():
|
|
10 |
self.current_size = "base"
|
11 |
self.loaded_model = whisper.load_model(self.current_size)
|
12 |
self.yt = None
|
13 |
-
|
14 |
-
|
15 |
-
self.tokenizer_model = AutoTokenizer.from_pretrained("google/pegasus-large")
|
16 |
-
self.summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/pegasus-large")
|
17 |
|
18 |
# Initialize VoiceLabT5 model and tokenizer
|
19 |
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
@@ -35,16 +32,9 @@ class GradioInference():
|
|
35 |
self.current_size = size
|
36 |
|
37 |
results = self.loaded_model.transcribe(path, language=lang)
|
38 |
-
|
39 |
-
inputs = self.tokenizer_model(results["text"], max_length=1024, truncation=True, return_tensors="pt")
|
40 |
-
|
41 |
-
summary_ids = self.keyword_model.generate(inputs["input_ids"])
|
42 |
-
summary = self.keyword_tokenizer.batch_decode(summary_ids,
|
43 |
-
skip_special_tokens=True,
|
44 |
-
clean_up_tokenization_spaces=False)
|
45 |
|
46 |
# Perform summarization on the transcription
|
47 |
-
|
48 |
|
49 |
# Extract keywords using VoiceLabT5
|
50 |
task_prefix = "Keywords: "
|
@@ -56,7 +46,7 @@ class GradioInference():
|
|
56 |
|
57 |
label = self.classifier(results["text"])[0]["label"]
|
58 |
|
59 |
-
return results["text"],
|
60 |
|
61 |
def populate_metadata(self, link):
|
62 |
self.yt = YouTube(link)
|
|
|
10 |
self.current_size = "base"
|
11 |
self.loaded_model = whisper.load_model(self.current_size)
|
12 |
self.yt = None
|
13 |
+
self.summarizer = pipeline("summarization", model="google/pegasus-large")
|
|
|
|
|
|
|
14 |
|
15 |
# Initialize VoiceLabT5 model and tokenizer
|
16 |
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
|
|
32 |
self.current_size = size
|
33 |
|
34 |
results = self.loaded_model.transcribe(path, language=lang)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Perform summarization on the transcription
|
37 |
+
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
38 |
|
39 |
# Extract keywords using VoiceLabT5
|
40 |
task_prefix = "Keywords: "
|
|
|
46 |
|
47 |
label = self.classifier(results["text"])[0]["label"]
|
48 |
|
49 |
+
return results["text"], transcription_summary[0]["summary_text"], keywords, label
|
50 |
|
51 |
def populate_metadata(self, link):
|
52 |
self.yt = YouTube(link)
|