import gradio as gr import whisper from pytube import YouTube import yake from transformers import pipeline class GradioInference(): def __init__(self): self.sizes = list(whisper._MODELS.keys()) self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) self.current_size = "base" self.loaded_model = whisper.load_model(self.current_size) self.yt = None # Initialize YAKE keyword extractor self.keyword_extractor = yake.KeywordExtractor(lan="en", n=3, dedupLim=0.9, dedupFunc="seqm", windowsSize=1, top=5, features=None) # Initialize Facebook/BART-Large-CNN summarizer self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def __call__(self, link, lang, size): if self.yt is None: self.yt = YouTube(link) path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4") if lang == "none": lang = None if size != self.current_size: self.loaded_model = whisper.load_model(size) self.current_size = size results = self.loaded_model.transcribe(path, language=lang) # Perform summarization on the transcription transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False) # Extract keywords from the transcription keywords = self.keyword_extractor.extract_keywords(results["text"]) return results["text"], transcription_summary[0]["summary_text"], [kw[0] for kw in keywords] def populate_metadata(self, link): self.yt = YouTube(link) return self.yt.thumbnail_url, self.yt.title gio = GradioInference() title = "Youtube Whisperer" description = "Speech to text transcription, summary, and keyword extraction of Youtube videos using OpenAI's Whisper, Facebook/BART-Large-CNN, and YAKE" block = gr.Blocks() with block: gr.HTML( """
Speech to text transcription, summary, and keyword extraction of Youtube videos using OpenAI's Whisper, Facebook/BART-Large-CNN, and YAKE