import gradio as gr import whisper from pytube import YouTube from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration class GradioInference(): def __init__(self): self.sizes = list(whisper._MODELS.keys()) self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) self.current_size = "base" self.loaded_model = whisper.load_model(self.current_size) self.yt = None self.summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # Initialize VoiceLabT5 model and tokenizer self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords") self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords") # Sentiment Classifier self.classifier = pipeline("text-classification") def __call__(self, link, lang, size): if self.yt is None: self.yt = YouTube(link) path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4") if lang == "none": lang = None if size != self.current_size: self.loaded_model = whisper.load_model(size) self.current_size = size results = self.loaded_model.transcribe(path, language=lang) # Perform summarization on the transcription transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False) # Extract keywords using VoiceLabT5 task_prefix = "Keywords: " input_sequence = task_prefix + results["text"] input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4) predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) keywords = [x.strip() for x in predicted.split(',') if x.strip()] label = self.classifier(results["text"])[0]["label"] return results["text"], transcription_summary[0]["summary_text"], keywords, label def populate_metadata(self, link): self.yt = YouTube(link) return self.yt.thumbnail_url, self.yt.title def transcribe_audio(audio_file): model = whisper.load_model("base") result = model.transcribe(audio_file) return result["text"] gio = GradioInference() title = "Youtube Insights" description = "Your AI-powered video analytics tool" block = gr.Blocks() with block as demo: gr.HTML( """

Youtube Insights 📹

Your AI-powered video analytics tool

""" ) with gr.Group(): with gr.Tab("From YouTube"): with gr.Box(): with gr.Row().style(equal_height=True): size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base') lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none") link = gr.Textbox(label="YouTube Link") title = gr.Label(label="Video Title") with gr.Row().style(equal_height=True): img = gr.Image(label="Thumbnail") text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10).style(show_copy_button=True, container=True) with gr.Row().style(equal_height=True): summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5).style(show_copy_button=True, container=True) keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5).style(show_copy_button=True, container=True) label = gr.Label(label="Sentiment Analysis") with gr.Row().style(equal_height=True): clear = gr.ClearButton([link, title, img, text, summary, keywords, label], scale=1) btn = gr.Button("Get video insights", variant='primary', scale=1) btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label]) link.change(gio.populate_metadata, inputs=[link], outputs=[img, title]) with gr.Tab("From Audio file"): with gr.Box(): with gr.Row().style(equal_height=True): size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base') lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none") audio_file = gr.Audio(type="filepath") with gr.Row().style(equal_height=True): # img = gr.Image(label="Thumbnail") text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10).style(show_copy_button=True, container=False) # with gr.Row().style(equal_height=True): # summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5) # keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5) with gr.Row().style(equal_height=True): clear = gr.ClearButton([text], scale=1) btn = gr.Button("Get video insights", variant='primary', scale=1) # Updated button label btn.click(transcribe_audio, inputs=[audio_file], outputs=[text]) # link.change(gio.populate_metadata, inputs=[link], outputs=[img, title]) with block: gr.Markdown("About the app:") with gr.Accordion("What is YouTube Insights?", open=False): gr.Markdown("YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files.") with gr.Accordion("How does it work?", open=False): gr.Markdown("Works by using OpenAI's Whisper, DistilBART for summarization and VoiceLabT5 for Keyword Extraction.") gr.HTML("""

2023 Master in Big Data & Data Science - Universidad Complutense de Madrid

""") demo.launch()