# Imports import gradio as gr import whisper from pytube import YouTube from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM from wordcloud import WordCloud import re class GradioInference: def __init__(self): # OpenAI's Whisper model sizes self.sizes = list(whisper._MODELS.keys()) # Whisper's available languages for ASR self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) # Default size self.current_size = "base" # Default model size self.loaded_model = whisper.load_model(self.current_size) # Initialize Pytube Object self.yt = None # Initialize summary model self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Initialize VoiceLabT5 model and tokenizer self.keyword_model = T5ForConditionalGeneration.from_pretrained( "Voicelab/vlt5-base-keywords" ) self.keyword_tokenizer = T5Tokenizer.from_pretrained( "Voicelab/vlt5-base-keywords" ) # Sentiment Classifier self.classifier = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=False) self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") self.model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") def __call__(self, link, lang, size, progress=gr.Progress()): """ Call the Gradio Inference python class. This class gets access to a YouTube video using python's library Pytube and downloads its audio. Then it uses the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text). Once the function has the transcription of the video it proccess it to obtain: - Summary: using Facebook's BART transformer. - KeyWords: using VoiceLabT5 keyword extractor. - Sentiment Analysis: using Hugging Face's default sentiment classifier - WordCloud: using the wordcloud python library. """ progress(0, desc="Starting analysis") if self.yt is None: self.yt = YouTube(link) # Pytube library to access to YouTube audio stream path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4") if lang == "none": lang = None if size != self.current_size: self.loaded_model = whisper.load_model(size) self.current_size = size progress(0.20, desc="Transcribing") # Transcribe the audio extracted from pytube results = self.loaded_model.transcribe(path, language=lang) progress(0.40, desc="Summarizing") # Perform summarization on the transcription transcription_summary = self.summarizer( results["text"], max_length=150, min_length=30, do_sample=False ) #### Prueba WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids_sum = self.tokenizer( [WHITESPACE_HANDLER(results["text"])], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids_sum = self.model.generate( input_ids=input_ids_sum, max_length=130, no_repeat_ngram_size=2, num_beams=4 )[0] summary = self.tokenizer.decode( output_ids_sum, skip_special_tokens=True, clean_up_tokenization_spaces=False ) #### Fin prueba progress(0.50, desc="Extracting Keywords") # Extract keywords using VoiceLabT5 task_prefix = "Keywords: " input_sequence = task_prefix + results["text"] input_ids = self.keyword_tokenizer( input_sequence, return_tensors="pt", truncation=False ).input_ids output = self.keyword_model.generate( input_ids, no_repeat_ngram_size=3, num_beams=4 ) predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) keywords = [x.strip() for x in predicted.split(",") if x.strip()] formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords]) progress(0.80, desc="Extracting Sentiment") # Sentiment label label = self.classifier(summary)[0]["label"] progress(0.90, desc="Generating Wordcloud") # Generate WordCloud object wordcloud = WordCloud(colormap = "Oranges").generate(results["text"]) # WordCloud image to display wordcloud_image = wordcloud.to_image() if lang == "english": return ( results["text"], transcription_summary[0]["summary_text"], formatted_keywords, label, wordcloud_image, ) else: return ( results["text"], summary, formatted_keywords, label, wordcloud_image, ) def populate_metadata(self, link): """ Access to the YouTube video title and thumbnail image to further display it params: - link: a YouTube URL. """ self.yt = YouTube(link) return self.yt.thumbnail_url, self.yt.title def from_audio_input(self, lang, size, audio_file, progress=gr.Progress()): """ Call the Gradio Inference python class. Uses it directly the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text). Once the function has the transcription of the video it proccess it to obtain: - Summary: using Facebook's BART transformer. - KeyWords: using VoiceLabT5 keyword extractor. - Sentiment Analysis: using Hugging Face's default sentiment classifier - WordCloud: using the wordcloud python library. """ progress(0, desc="Starting analysis") if lang == "none": lang = None if size != self.current_size: self.loaded_model = whisper.load_model(size) self.current_size = size progress(0.20, desc="Transcribing") results = self.loaded_model.transcribe(audio_file, language=lang) progress(0.40, desc="Summarizing") # Perform summarization on the transcription transcription_summary = self.summarizer( results["text"], max_length=150, min_length=30, do_sample=False ) #### Prueba WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids_sum = self.tokenizer( [WHITESPACE_HANDLER(results["text"])], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids_sum = self.model.generate( input_ids=input_ids_sum, max_length=130, no_repeat_ngram_size=2, num_beams=4 )[0] summary = self.tokenizer.decode( output_ids_sum, skip_special_tokens=True, clean_up_tokenization_spaces=False ) #### Fin prueba progress(0.50, desc="Extracting Keywords") # Extract keywords using VoiceLabT5 task_prefix = "Keywords: " input_sequence = task_prefix + results["text"] input_ids = self.keyword_tokenizer( input_sequence, return_tensors="pt", truncation=False ).input_ids output = self.keyword_model.generate( input_ids, no_repeat_ngram_size=3, num_beams=4 ) predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) keywords = [x.strip() for x in predicted.split(",") if x.strip()] formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords]) progress(0.80, desc="Extracting Sentiment") # Define a dictionary to map labels to emojis sentiment_emojis = { "positive": "Positive 👍🏼", "negative": "Negative 👎🏼", "neutral": "Neutral 😶", } # Sentiment label label = self.classifier(summary)[0]["label"] # Format the label with emojis formatted_sentiment = sentiment_emojis.get(label, label) progress(0.90, desc="Generating Wordcloud") # WordCloud object wordcloud = WordCloud(colormap = "Oranges").generate( results["text"] ) wordcloud_image = wordcloud.to_image() if lang == "english": return ( results["text"], transcription_summary[0]["summary_text"], formatted_keywords, formatted_sentiment, wordcloud_image, ) else: return ( results["text"], summary, formatted_keywords, formatted_sentiment, wordcloud_image, ) gio = GradioInference() title = "YouTube Insights" description = "Your AI-powered video analytics tool" block = gr.Blocks() with block as demo: gr.HTML( """
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid