Spaces:
Runtime error
Runtime error
Commit
·
5a3bdec
1
Parent(s):
b0808a3
Update app.py
Browse files
app.py
CHANGED
@@ -57,125 +57,131 @@ class GradioInference:
|
|
57 |
- Sentiment Analysis: using Hugging Face's default sentiment classifier
|
58 |
- WordCloud: using the wordcloud python library.
|
59 |
"""
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
)
|
92 |
-
|
93 |
-
# Multilingual summary with mt5
|
94 |
-
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
95 |
-
|
96 |
-
input_ids_sum = self.mt5_tokenizer(
|
97 |
-
[WHITESPACE_HANDLER(results["text"])],
|
98 |
-
return_tensors="pt",
|
99 |
-
padding="max_length",
|
100 |
-
truncation=True,
|
101 |
-
max_length=512
|
102 |
-
)["input_ids"]
|
103 |
-
|
104 |
-
output_ids_sum = self.mt5_model.generate(
|
105 |
-
input_ids=input_ids_sum,
|
106 |
-
max_length=256,
|
107 |
-
no_repeat_ngram_size=2,
|
108 |
-
num_beams=4
|
109 |
-
)[0]
|
110 |
-
|
111 |
-
summary = self.mt5_tokenizer.decode(
|
112 |
-
output_ids_sum,
|
113 |
-
skip_special_tokens=True,
|
114 |
-
clean_up_tokenization_spaces=False
|
115 |
-
)
|
116 |
-
# End multilingual summary
|
117 |
-
|
118 |
-
progress(0.60, desc="Extracting Keywords")
|
119 |
-
|
120 |
-
# Extract keywords using VoiceLabT5
|
121 |
-
task_prefix = "Keywords: "
|
122 |
-
input_sequence = task_prefix + results["text"]
|
123 |
-
|
124 |
-
input_ids = self.keyword_tokenizer(
|
125 |
-
input_sequence,
|
126 |
-
return_tensors="pt",
|
127 |
-
truncation=False
|
128 |
-
).input_ids
|
129 |
-
|
130 |
-
output = self.keyword_model.generate(
|
131 |
-
input_ids,
|
132 |
-
no_repeat_ngram_size=3,
|
133 |
-
num_beams=4
|
134 |
-
)
|
135 |
-
|
136 |
-
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
137 |
-
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
138 |
-
formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords])
|
139 |
-
|
140 |
-
progress(0.80, desc="Extracting Sentiment")
|
141 |
-
|
142 |
-
# Define a dictionary to map labels to emojis
|
143 |
-
sentiment_emojis = {
|
144 |
-
"positive": "Positive 👍🏼",
|
145 |
-
"negative": "Negative 👎🏼",
|
146 |
-
"neutral": "Neutral 😶",
|
147 |
-
}
|
148 |
-
|
149 |
-
# Sentiment label
|
150 |
-
label = self.classifier(summary)[0]["label"]
|
151 |
-
|
152 |
-
# Format the label with emojis
|
153 |
-
formatted_sentiment = sentiment_emojis.get(label, label)
|
154 |
-
|
155 |
-
progress(0.90, desc="Generating Wordcloud")
|
156 |
-
|
157 |
-
# Generate WordCloud object
|
158 |
-
wordcloud = WordCloud(colormap = "Oranges").generate(results["text"])
|
159 |
-
|
160 |
-
# WordCloud image to display
|
161 |
-
wordcloud_image = wordcloud.to_image()
|
162 |
-
|
163 |
-
if lang == "english" or lang == "none":
|
164 |
-
return (
|
165 |
-
results["text"],
|
166 |
-
transcription_summary[0]["summary_text"],
|
167 |
-
formatted_keywords,
|
168 |
-
formatted_sentiment,
|
169 |
-
wordcloud_image,
|
170 |
)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
|
181 |
def populate_metadata(self, link):
|
|
|
57 |
- Sentiment Analysis: using Hugging Face's default sentiment classifier
|
58 |
- WordCloud: using the wordcloud python library.
|
59 |
"""
|
60 |
+
try:
|
61 |
+
|
62 |
+
progress(0, desc="Starting analysis")
|
63 |
+
|
64 |
+
if self.yt is None:
|
65 |
+
self.yt = YouTube(link)
|
66 |
+
|
67 |
+
# Pytube library to access to YouTube audio stream
|
68 |
+
path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")
|
69 |
+
|
70 |
+
if lang == "none":
|
71 |
+
lang = None
|
72 |
+
|
73 |
+
if size != self.current_size:
|
74 |
+
self.loaded_model = whisper.load_model(size)
|
75 |
+
self.current_size = size
|
76 |
+
|
77 |
+
progress(0.20, desc="Transcribing")
|
78 |
+
|
79 |
+
# Transcribe the audio extracted from pytube
|
80 |
+
results = self.loaded_model.transcribe(path, language=lang)
|
81 |
+
|
82 |
+
progress(0.40, desc="Summarizing")
|
83 |
+
|
84 |
+
# Perform summarization on the transcription
|
85 |
+
transcription_summary = self.bart_summarizer(
|
86 |
+
results["text"],
|
87 |
+
max_length=256,
|
88 |
+
min_length=30,
|
89 |
+
do_sample=False,
|
90 |
+
truncation=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
+
|
93 |
+
# Multilingual summary with mt5
|
94 |
+
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
95 |
+
|
96 |
+
input_ids_sum = self.mt5_tokenizer(
|
97 |
+
[WHITESPACE_HANDLER(results["text"])],
|
98 |
+
return_tensors="pt",
|
99 |
+
padding="max_length",
|
100 |
+
truncation=True,
|
101 |
+
max_length=512
|
102 |
+
)["input_ids"]
|
103 |
+
|
104 |
+
output_ids_sum = self.mt5_model.generate(
|
105 |
+
input_ids=input_ids_sum,
|
106 |
+
max_length=256,
|
107 |
+
no_repeat_ngram_size=2,
|
108 |
+
num_beams=4
|
109 |
+
)[0]
|
110 |
+
|
111 |
+
summary = self.mt5_tokenizer.decode(
|
112 |
+
output_ids_sum,
|
113 |
+
skip_special_tokens=True,
|
114 |
+
clean_up_tokenization_spaces=False
|
115 |
+
)
|
116 |
+
# End multilingual summary
|
117 |
+
|
118 |
+
progress(0.60, desc="Extracting Keywords")
|
119 |
+
|
120 |
+
# Extract keywords using VoiceLabT5
|
121 |
+
task_prefix = "Keywords: "
|
122 |
+
input_sequence = task_prefix + results["text"]
|
123 |
+
|
124 |
+
input_ids = self.keyword_tokenizer(
|
125 |
+
input_sequence,
|
126 |
+
return_tensors="pt",
|
127 |
+
truncation=False
|
128 |
+
).input_ids
|
129 |
+
|
130 |
+
output = self.keyword_model.generate(
|
131 |
+
input_ids,
|
132 |
+
no_repeat_ngram_size=3,
|
133 |
+
num_beams=4
|
134 |
)
|
135 |
+
|
136 |
+
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
137 |
+
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
138 |
+
formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords])
|
139 |
+
|
140 |
+
progress(0.80, desc="Extracting Sentiment")
|
141 |
+
|
142 |
+
# Define a dictionary to map labels to emojis
|
143 |
+
sentiment_emojis = {
|
144 |
+
"positive": "Positive 👍🏼",
|
145 |
+
"negative": "Negative 👎🏼",
|
146 |
+
"neutral": "Neutral 😶",
|
147 |
+
}
|
148 |
+
|
149 |
+
# Sentiment label
|
150 |
+
label = self.classifier(summary)[0]["label"]
|
151 |
+
|
152 |
+
# Format the label with emojis
|
153 |
+
formatted_sentiment = sentiment_emojis.get(label, label)
|
154 |
+
|
155 |
+
progress(0.90, desc="Generating Wordcloud")
|
156 |
+
|
157 |
+
# Generate WordCloud object
|
158 |
+
wordcloud = WordCloud(colormap = "Oranges").generate(results["text"])
|
159 |
+
|
160 |
+
# WordCloud image to display
|
161 |
+
wordcloud_image = wordcloud.to_image()
|
162 |
+
|
163 |
+
if lang == "english" or lang == "none":
|
164 |
+
return (
|
165 |
+
results["text"],
|
166 |
+
transcription_summary[0]["summary_text"],
|
167 |
+
formatted_keywords,
|
168 |
+
formatted_sentiment,
|
169 |
+
wordcloud_image,
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
return (
|
173 |
+
results["text"],
|
174 |
+
summary,
|
175 |
+
formatted_keywords,
|
176 |
+
formatted_sentiment,
|
177 |
+
wordcloud_image,
|
178 |
+
)
|
179 |
+
|
180 |
+
except:
|
181 |
+
gr.Error("Restricted Content. Choose a different video")
|
182 |
+
return None, None, None, None, None
|
183 |
+
|
184 |
+
gr.Info("Success")
|
185 |
|
186 |
|
187 |
def populate_metadata(self, link):
|