# Libraries import gradio as gr import whisper from pytube import YouTube from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM import torch from wordcloud import WordCloud import re import os class GradioInference: def __init__(self): # OpenAI's Whisper model sizes self.sizes = list(whisper._MODELS.keys()) # Whisper's available languages for ASR self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) # Default size self.current_size = "base" # Default model size self.loaded_model = whisper.load_model(self.current_size) # Initialize Pytube Object self.yt = None # Initialize summary model for English self.bart_summarizer = pipeline("summarization", model="facebook/bart-large-cnn", truncation=True) # Initialize Multilingual summary model self.mt5_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum", truncation=True) self.mt5_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") # Initialize VoiceLabT5 model and tokenizer self.keyword_model = T5ForConditionalGeneration.from_pretrained( "Voicelab/vlt5-base-keywords" ) self.keyword_tokenizer = T5Tokenizer.from_pretrained( "Voicelab/vlt5-base-keywords" ) # Sentiment Classifier self.classifier = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=False) def __call__(self, link, lang, size, progress=gr.Progress()): """ Call the Gradio Inference python class. This class gets access to a YouTube video using python's library Pytube and downloads its audio. Then it uses the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text). Once the function has the transcription of the video it proccess it to obtain: - Summary: using Facebook's BART transformer. - KeyWords: using VoiceLabT5 keyword extractor. - Sentiment Analysis: using Hugging Face's default sentiment classifier - WordCloud: using the wordcloud python library. """ try: progress(0, desc="Starting analysis") if self.yt is None: self.yt = YouTube(link) # Pytube library to access to YouTube audio stream path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4") if lang == "none": lang = None if size != self.current_size: self.loaded_model = whisper.load_model(size) self.current_size = size progress(0.20, desc="Transcribing") # Transcribe the audio extracted from pytube results = self.loaded_model.transcribe(path, language=lang) progress(0.40, desc="Summarizing") # Perform summarization on the transcription transcription_summary = self.bart_summarizer( results["text"], max_length=150, min_length=30, do_sample=False, truncation=True ) # Multilingual summary with mt5 WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids_sum = self.mt5_tokenizer( [WHITESPACE_HANDLER(results["text"])], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids_sum = self.mt5_model.generate( input_ids=input_ids_sum, max_length=256, no_repeat_ngram_size=2, num_beams=4 )[0] summary = self.mt5_tokenizer.decode( output_ids_sum, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # End multilingual summary progress(0.60, desc="Extracting Keywords") # Extract keywords using VoiceLabT5 task_prefix = "Keywords: " input_sequence = task_prefix + results["text"] input_ids = self.keyword_tokenizer( input_sequence, return_tensors="pt", truncation=False ).input_ids output = self.keyword_model.generate( input_ids, no_repeat_ngram_size=3, num_beams=4 ) predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) keywords = [x.strip() for x in predicted.split(",") if x.strip()] formatted_keywords = "\n".join([f"β€’ {keyword}" for keyword in keywords]) progress(0.80, desc="Extracting Sentiment") # Define a dictionary to map labels to emojis sentiment_emojis = { "positive": "Positive πŸ‘πŸΌ", "negative": "Negative πŸ‘ŽπŸΌ", "neutral": "Neutral 😢", } # Sentiment label label = self.classifier(summary)[0]["label"] # Format the label with emojis formatted_sentiment = sentiment_emojis.get(label, label) progress(0.90, desc="Generating Wordcloud") # Generate WordCloud object wordcloud = WordCloud(colormap = "Oranges").generate(results["text"]) # WordCloud image to display wordcloud_image = wordcloud.to_image() if lang == "english" or lang == "none": return ( results["text"], transcription_summary[0]["summary_text"], formatted_keywords, formatted_sentiment, wordcloud_image, ) else: return ( results["text"], summary, formatted_keywords, formatted_sentiment, wordcloud_image, ) except: gr.Error(message="Restricted Content. Choose a different video") finally: gr.Info("Success!") def populate_metadata(self, link): """ Access to the YouTube video title and thumbnail image to further display it params: - link: a YouTube URL. """ if not link: return None, None self.yt = YouTube(link) return self.yt.thumbnail_url, self.yt.title def from_audio_input(self, lang, size, audio_file, progress=gr.Progress()): """ Call the Gradio Inference python class. Uses it directly the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text). Once the function has the transcription of the video it proccess it to obtain: - Summary: using Facebook's BART transformer. - KeyWords: using VoiceLabT5 keyword extractor. - Sentiment Analysis: using Hugging Face's default sentiment classifier - WordCloud: using the wordcloud python library. """ try: progress(0, desc="Starting analysis") if lang == "none": lang = None if size != self.current_size: self.loaded_model = whisper.load_model(size) self.current_size = size progress(0.20, desc="Transcribing") results = self.loaded_model.transcribe(audio_file, language=lang) progress(0.40, desc="Summarizing") # Perform summarization on the transcription transcription_summary = self.bart_summarizer( results["text"], max_length=150, min_length=30, do_sample=False, truncation=True ) # Multilingual summary with mt5 WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids_sum = self.mt5_tokenizer( [WHITESPACE_HANDLER(results["text"])], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids_sum = self.mt5_model.generate( input_ids=input_ids_sum, max_length=130, no_repeat_ngram_size=2, num_beams=4 )[0] summary = self.mt5_tokenizer.decode( output_ids_sum, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # End multilingual summary progress(0.60, desc="Extracting Keywords") # Extract keywords using VoiceLabT5 task_prefix = "Keywords: " input_sequence = task_prefix + results["text"] input_ids = self.keyword_tokenizer( input_sequence, return_tensors="pt", truncation=False ).input_ids output = self.keyword_model.generate( input_ids, no_repeat_ngram_size=3, num_beams=4 ) predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) keywords = [x.strip() for x in predicted.split(",") if x.strip()] formatted_keywords = "\n".join([f"β€’ {keyword}" for keyword in keywords]) progress(0.80, desc="Extracting Sentiment") # Define a dictionary to map labels to emojis sentiment_emojis = { "positive": "Positive πŸ‘πŸΌ", "negative": "Negative πŸ‘ŽπŸΌ", "neutral": "Neutral 😢", } # Sentiment label label = self.classifier(summary)[0]["label"] # Format the label with emojis formatted_sentiment = sentiment_emojis.get(label, label) progress(0.90, desc="Generating Wordcloud") # WordCloud object wordcloud = WordCloud(colormap = "Oranges").generate( results["text"] ) wordcloud_image = wordcloud.to_image() if lang == "english" or lang == "none": return ( results["text"], transcription_summary[0]["summary_text"], formatted_keywords, formatted_sentiment, wordcloud_image, ) else: return ( results["text"], summary, formatted_keywords, formatted_sentiment, wordcloud_image, ) except: gr.Error(message="Exceeded audio size. Choose a different audio") finally: gr.Info("Success!") def from_article(self, article, progress=gr.Progress()): """ Call the Gradio Inference python class. Acepts the user's text imput, then it performs: - Summary: using Facebook's BART transformer. - KeyWords: using VoiceLabT5 keyword extractor. - Sentiment Analysis: using Hugging Face's default sentiment classifier - WordCloud: using the wordcloud python library. """ try: progress(0, desc="Starting analysis") progress(0.30, desc="Summarizing") # Perform summarization on the transcription transcription_summary = self.bart_summarizer( article, max_length=150, min_length=30, do_sample=False, truncation=True ) # Multilingual summary with mt5 WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids_sum = self.mt5_tokenizer( [WHITESPACE_HANDLER(article)], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids_sum = self.mt5_model.generate( input_ids=input_ids_sum, max_length=130, no_repeat_ngram_size=2, num_beams=4 )[0] summary = self.mt5_tokenizer.decode( output_ids_sum, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # End multilingual summary progress(0.60, desc="Extracting Keywords") # Extract keywords using VoiceLabT5 task_prefix = "Keywords: " input_sequence = task_prefix + article input_ids = self.keyword_tokenizer( input_sequence, return_tensors="pt", truncation=False ).input_ids output = self.keyword_model.generate( input_ids, no_repeat_ngram_size=3, num_beams=4 ) predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) keywords = [x.strip() for x in predicted.split(",") if x.strip()] formatted_keywords = "\n".join([f"β€’ {keyword}" for keyword in keywords]) progress(0.80, desc="Extracting Sentiment") # Define a dictionary to map labels to emojis sentiment_emojis = { "positive": "Positive πŸ‘πŸΌ", "negative": "Negative πŸ‘ŽπŸΌ", "neutral": "Neutral 😢", } # Sentiment label label = self.classifier(summary)[0]["label"] # Format the label with emojis formatted_sentiment = sentiment_emojis.get(label, label) progress(0.90, desc="Generating Wordcloud") # WordCloud object wordcloud = WordCloud(colormap = "Oranges").generate( article ) wordcloud_image = wordcloud.to_image() return ( transcription_summary[0]["summary_text"], formatted_keywords, formatted_sentiment, wordcloud_image, ) except: gr.Error(message="Exceeded text size. Choose a different audio") finally: gr.Info("Success!") gio = GradioInference() title = "Media Insights" description = "Your AI-powered video analytics tool" theme = gr.themes.Soft(spacing_size="md", radius_size="md") block = gr.Blocks(theme=theme) # Gradio Interface with block as demo: # Title gr.HTML( """

MEDIA INSIGHTS πŸ’‘

Your AI-powered media analytics tool ✨

""" ) # Group of tabs with gr.Group(): with gr.Tab("From YouTube πŸ“Ή"): with gr.Box(): # Model Size and Language selections with gr.Row().style(equal_height=True): size = gr.Dropdown( label="Speech-to-text Model Size", choices=gio.sizes, value="base" ) lang = gr.Dropdown( label="Language (Optional)", choices=gio.langs, value="none" ) link = gr.Textbox( label="YouTube Link", placeholder="Enter YouTube link..." ) # Video Metadata with gr.Row().style(equal_height=True): with gr.Column(variant="panel", scale=1): title = gr.Label(label="Video Title") img = gr.Image(label="Thumbnail").style(height=350) # Video Transcription with gr.Column(variant="panel", scale=1): text = gr.Textbox( label="Transcription", placeholder="Transcription Output...", lines=18, ).style(show_copy_button=True) # Video block of summary, keywords , sent. analysis and wordcloud with gr.Row().style(equal_height=True): summary = gr.Textbox( label="Summary", placeholder="Summary Output...", lines=5 ).style(show_copy_button=True) keywords = gr.Textbox( label="Keywords", placeholder="Keywords Output...", lines=5 ).style(show_copy_button=True) label = gr.Label(label="Sentiment Analysis") wordcloud_image = gr.Image(label="WordCloud") # Buttons with gr.Row(): btn = gr.Button("Get Video Insights πŸ”Ž", variant="primary", scale=1) clear = gr.ClearButton( [link, title, img, text, summary, keywords, label, wordcloud_image], value="Clear πŸ—‘οΈ", scale=1 ) btn.click( gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label, wordcloud_image], ) link.change(gio.populate_metadata, inputs=[link], outputs=[img, title]) with gr.Tab("From Audio file πŸŽ™οΈ"): with gr.Box(): # Model selections with gr.Row().style(equal_height=True): size = gr.Dropdown( label="Model Size", choices=gio.sizes, value="base" ) lang = gr.Dropdown( label="Language (Optional)", choices=gio.langs, value="none" ) audio_file = gr.Audio(type="filepath") # Audio transcription with gr.Row().style(equal_height=True): text = gr.Textbox( label="Transcription", placeholder="Transcription Output...", lines=10, ).style(show_copy_button=True) # Audio analysis with gr.Row().style(equal_height=True): summary = gr.Textbox( label="Summary", placeholder="Summary Output...", lines=5 ).style(show_copy_button=True) keywords = gr.Textbox( label="Keywords", placeholder="Keywords Output...", lines=5 ).style(show_copy_button=True) label = gr.Label(label="Sentiment Analysis") wordcloud_image = gr.Image(label="WordCloud") with gr.Row(): btn = gr.Button( "Get Audio Insights πŸ”Ž", variant="primary" ) clear = gr.ClearButton([audio_file,text, summary, keywords, label, wordcloud_image], value="Clear πŸ—‘οΈ") btn.click( gio.from_audio_input, inputs=[lang, size, audio_file], outputs=[text, summary, keywords, label, wordcloud_image], ) with gr.Tab("From Article πŸ“‹"): with gr.Box(): # Text input from user with gr.Row().style(equal_height=True): article = gr.Textbox( label="Text", placeholder="Paste your text...", lines=10, ).style(show_copy_button=True) # Text analysis with gr.Row().style(equal_height=True): summary = gr.Textbox( label="Summary", placeholder="Summary Output...", lines=5 ).style(show_copy_button=True) keywords = gr.Textbox( label="Keywords", placeholder="Keywords Output...", lines=5 ).style(show_copy_button=True) label = gr.Label(label="Sentiment Analysis") wordcloud_image = gr.Image(label="WordCloud") with gr.Row(): btn = gr.Button( "Get Text insights πŸ”Ž", variant="primary") clear = gr.ClearButton([article, summary, keywords, label, wordcloud_image], value="Clear πŸ—‘οΈ") btn.click( gio.from_article, inputs=[article], outputs=[summary, keywords, label, wordcloud_image], ) # Open text example with open(os.path.join(os.path.dirname(__file__), "texts/India_Canada.txt"), "r") as file: text_example_content = file.read() with block: # Video Examples gr.Markdown("### Video Examples") gr.Examples(["https://www.youtube.com/shorts/xDNzz8yAH7I", "https://youtu.be/MnrJzXM7a6o", "https://youtu.be/FKjj1tNcbtM"], inputs=link) # Audio Examples gr.Markdown("### Audio Examples") gr.Examples([[os.path.join(os.path.dirname(__file__),"audios/EnglishLecture.mp4")]], inputs=audio_file) # Text Examples gr.Markdown("### Text Examples") with gr.Accordion("News text example", open=False): gr.Examples([[text_example_content]], inputs=article) # FAQs section gr.Markdown("### About the app:") with gr.Accordion("What is Media Insights?", open=False): gr.Markdown( "Media Insights is a tool developed for academic purposes that allows you to analyze YouTube videos, audio files or some text. It provides features like transcription, summarization, keyword extraction, sentiment analysis, and word cloud generation for multimedia content." ) with gr.Accordion("How does Media Insights work?", open=False): gr.Markdown( "Media Insights leverages several powerful AI models and libraries. It uses OpenAI's Whisper for Automatic Speech Recognition (ASR) to transcribe audio content. It summarizes the transcribed text using Facebook's BART model, extracts keywords with VoiceLabT5, performs sentiment analysis with DistilBERT, and generates word clouds." ) with gr.Accordion("What languages are supported for the analysis?", open=False): gr.Markdown( "Media Insights supports multiple languages for transcription and analysis. You can select your preferred language from the available options when using the app." ) with gr.Accordion("Can I analyze audio files instead of YouTube videos?", open=False): gr.Markdown( "Yes, you can analyze audio files directly. Simply upload your audio file to the app, and it will provide the same transcription, summarization, keyword extraction, sentiment analysis, and word cloud generation features. In addition, you can also paste your article or text of your preference, to get all the insights directly from it." ) with gr.Accordion("What are the different model sizes available for transcription?", open=False): gr.Markdown( "The app uses a Speech-to-text model that has different training sizes, from tiny to large. Hence, the bigger the model the accurate the transcription." ) with gr.Accordion("How long does it take to analyze a video or audio file?", open=False): gr.Markdown( "The time taken for analysis may vary based on the duration of the video or audio file and the selected model size. Shorter content will be processed more quickly." ) with gr.Accordion("Who developed Media Insights?" ,open=False): gr.Markdown( "Media Insights was developed by students as part of the 2022/23 Master's in Big Data & Data Science program at Universidad Complutense de Madrid for academic purposes (Trabajo de Fin de Master)." ) # Page footer gr.HTML( """

Trabajo de Fin de MΓ‘ster - Grupo 3

2022/23 Master in Big Data & Data Science - Universidad Complutense de Madrid

""" ) demo.launch()