File size: 9,428 Bytes
0404f0a c2b0a49 0b3105d c2b0a49 6ac36ef c2b0a49 6ac36ef c2b0a49 abd24db c2b0a49 0b3105d c2b0a49 0b3105d c2b0a49 7bbedb1 c2b0a49 8bcf3e5 abd24db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import streamlit as st
import numpy as np
import torch
from torch.autograd import Variable
import argparse
import os
import re
from data_preprocessing import remove_xem_them, remove_emojis, remove_stopwords, format_punctuation, remove_punctuation, clean_text, normalize_format, word_segment, format_price, format_price_v2
class inferSSCL():
def __init__(self, args='None'):
self.args = args
self.base_models = {}
self.batch_data = {}
self.test_data = []
self.output = []
def load_vocab_pretrain(self, file_pretrain_vocab, file_pretrain_vec, pad_tokens=True):
vocab2id = {'<pad>': 0}
id2vocab = {0: '<pad>'}
cnt = len(id2vocab)
with open(file_pretrain_vocab, 'r', encoding='utf-8') as fp:
for line in fp:
arr = re.split(' ', line[:-1])
vocab2id[arr[1]] = cnt
id2vocab[cnt] = arr[1]
cnt += 1
# word embedding
pretrain_vec = np.load(file_pretrain_vec)
pad_vec = np.zeros([1, pretrain_vec.shape[1]])
pretrain_vec = np.vstack((pad_vec, pretrain_vec))
return vocab2id, id2vocab, pretrain_vec
def load_vocabulary(self):
cluster_dir = './'
file_wordvec = 'vectors.npy'
file_vocab = 'vocab.txt'
file_kmeans_centroid = 'aspect_centroid.txt'
file_aspect_mapping = 'aspect_mapping.txt'
vocab2id, id2vocab, pretrain_vec = self.load_vocab_pretrain(os.path.join(cluster_dir, file_vocab), os.path.join(cluster_dir, file_wordvec))
vocab_size = len(vocab2id)
self.batch_data['vocab2id'] = vocab2id
self.batch_data['id2vocab'] = id2vocab
self.batch_data['pretrain_emb'] = pretrain_vec
self.batch_data['vocab_size'] = vocab_size
aspect_vec = np.loadtxt(os.path.join(cluster_dir, file_kmeans_centroid), dtype=float)
tmp = []
fp = open(os.path.join(cluster_dir, file_aspect_mapping), 'r')
for line in fp:
line = re.sub(r'[0-9]+', '', line)
line = line.replace(' ', '').replace('\n', '')
if line == "none":
tmp.append([0.] * 256)
else :
tmp.append([1.] * 256)
fp.close()
aspect_vec = aspect_vec * tmp
aspect_vec = torch.FloatTensor(aspect_vec).to(device)
self.batch_data['aspect_centroid'] = aspect_vec
self.batch_data['n_aspects'] = aspect_vec.shape[0]
def load_models(self):
self.base_models['embedding'] = torch.nn.Embedding(self.batch_data['vocab_size'], emb_size).to(device)
emb_para = torch.FloatTensor(self.batch_data['pretrain_emb']).to(device)
self.base_models['embedding'].weight = torch.nn.Parameter(emb_para)
self.base_models['asp_weight'] = torch.nn.Linear(emb_size, self.batch_data['n_aspects']).to(device)
self.base_models['asp_weight'].load_state_dict(torch.load('./asp_weight.model', map_location=torch.device('cpu')))
self.base_models['attn_kernel'] = torch.nn.Linear(emb_size, emb_size).to(device)
self.base_models['attn_kernel'].load_state_dict(torch.load('./attn_kernel.model', map_location=torch.device('cpu')), strict=False)
def build_pipe(self):
attn_pos, lbl_pos = self.encoder(
self.batch_data['pos_sen_var'],
self.batch_data['pos_pad_mask']
)
outw = np.around(attn_pos.data.cpu().numpy().tolist(), 4)
outw = outw.tolist()
outw = outw[:len(self.batch_data['comment'].split())]
asp_weight = self.base_models['asp_weight'](lbl_pos)
# Attention weight
asp_weight = torch.softmax(asp_weight, dim=1)
return asp_weight
def encoder(self, input_, mask_):
with torch.no_grad():
emb_ = self.base_models['embedding'](input_)
print(emb_.shape)
emb_ = emb_ * mask_.unsqueeze(2)
emb_avg = torch.sum(emb_, dim=1)
norm = torch.sum(mask_, dim=1, keepdim=True) + 1e-20
# query vector
enc_ = emb_avg.div(norm.expand_as(emb_avg))
#We Ex + be
emb_trn = self.base_models['attn_kernel'](emb_)
#query vetor * (We Ex + be)
attn_ = enc_.unsqueeze(1) @ emb_trn.transpose(1, 2)
attn_ = attn_.squeeze(1)
#alignment score
attn_ = self.args.smooth_factor * torch.tanh(attn_)
attn_ = attn_.masked_fill(mask_ == 0, -1e20)
# attention weight
attn_ = torch.softmax(attn_, dim=1)
#sxE
lbl_ = attn_.unsqueeze(1) @ emb_
lbl_ = lbl_.squeeze(1)
return attn_, lbl_
def build_batch(self, review):
vocab2id = self.batch_data['vocab2id']
sen_text = []
cmt = []
# sen_text_len = 0
sen_text_len = emb_size
senid = [vocab2id[wd] for wd in review.split() if wd in vocab2id]
sen_text.append(senid)
cmt.append(review)
# if len(senid) > sen_text_len:
# sen_text_len = len(senid)
sen_text_len = min(len(senid), sen_text_len)
sen_text = [itm[:sen_text_len] + [vocab2id['<pad>'] for _ in range(sen_text_len - len(itm))] for itm in sen_text]
sen_text_var = Variable(torch.LongTensor(sen_text)).to(device)
sen_pad_mask = Variable(torch.LongTensor(sen_text)).to(device)
sen_pad_mask[sen_pad_mask != vocab2id['<pad>']] = -1
sen_pad_mask[sen_pad_mask == vocab2id['<pad>']] = 0
sen_pad_mask = -sen_pad_mask
self.batch_data['comment'] = cmt
self.batch_data['pos_sen_var'] = sen_text_var
self.batch_data['pos_pad_mask'] = sen_pad_mask
def calculate_atten_weight(self):
attn_pos, lbl_pos = self.encoder(
self.batch_data['pos_sen_var'],
self.batch_data['pos_pad_mask']
)
asp_weight = self.base_models['asp_weight'](lbl_pos)
#print('asp_weight:', asp_weight)
asp_weight = torch.softmax(asp_weight, dim=1)
#print('soft_max:', asp_weight)
return asp_weight
def get_test_data(self):
asp_weight = self.calculate_atten_weight()
asp_weight = asp_weight.data.cpu().numpy().tolist()
output = {}
output['comment'] = self.batch_data['comment']
output['aspect_weight'] = asp_weight[0]
self.test_data.append(output)
def select_top(self, data):
#print(data)
d = np.abs(data - np.median(data))
mdev = np.median(d)
s = d/mdev if mdev else 0
return s
def get_predict(self, top_pred, aspect_label, threshold=3):
pred = {'none':0, 'do_an': 0, 'gia_ca':0, 'khong_gian': 0, 'phuc_vu': 0}
try:
for i in range(len(top_pred)):
if top_pred[i] > threshold:
pred[aspect_label[i]] = 1
except:
print('Error')
return pred
def get_evaluate_result(self, input_):
aspect_label = []
fp = open('./aspect_mapping.txt', 'r', encoding='utf8')
for line in fp:
aspect_label.append(line.split()[1])
fp.close()
top_score = self.select_top(input_['aspect_weight'])
print(top_score)
curr_pred = self.get_predict(top_score, aspect_label)
aspect_key = []
for key, value in curr_pred.items():
if int(value) == 1:
aspect_key.append(key)
return self.get_aspect(aspect_key)
def get_aspect(self, pred, ignore='none'):
if len(pred) > 1:
self.output.append(pred[1:])
else:
self.output.append(['None'])
def infer(self, text=''):
self.args.task = 'sscl-infer'
text = remove_xem_them(text)
text = remove_emojis(text)
text = format_punctuation(text)
text = remove_punctuation(text)
text = clean_text(text)
text = normalize_format(text)
text = word_segment(text)
text = remove_stopwords(text)
text = format_price(text)
input_ = format_price_v2(text)
print(input_)
self.load_vocabulary()
self.load_models()
self.build_batch(input_)
self.get_test_data()
val_result = self.test_data
self.get_evaluate_result(val_result[0])
parser = argparse.ArgumentParser()
parser.add_argument('--task', default='infer')
parser.add_argument('--smooth_factor', type=float, default=0.9)
device = 'cpu'
emb_size = 256
args = parser.parse_args(args=[])
model = inferSSCL(args)
cmt = st.text_area('Nhập nhận xét của bạn vào đây:')
if cmt == '':
st.title('Nhập nhận xét của bạn!')
else:
model.infer(cmt)
outputs = model.output[0]
if outputs:
for output in outputs:
if output == 'do_an':
st.title('Đồ ăn')
elif output == 'gia_ca':
st.title('Giá cả')
elif output == 'khong_gian':
st.title('Không gian')
elif output == 'phuc_vu':
st.title('Phục vụ')
else:
st.title('None') |