Spaces:
Runtime error
Runtime error
File size: 9,659 Bytes
5017f0e da2ea29 38e090f da2ea29 5017f0e 32f9f47 83a4675 5017f0e da2ea29 83a4675 da2ea29 32f9f47 83a4675 5017f0e da2ea29 5017f0e 32f9f47 83a4675 38e090f 32f9f47 1211632 83a4675 1211632 83a4675 658f973 83a4675 d3af935 83a4675 d3af935 83a4675 5017f0e 38e090f 5017f0e 38e090f 5017f0e 38e090f 32f9f47 38e090f 32f9f47 38e090f da2ea29 5017f0e 83a4675 da2ea29 83a4675 da2ea29 5017f0e da2ea29 5017f0e d3af935 83a4675 5017f0e 38e090f 83a4675 5017f0e da2ea29 38e090f da2ea29 5017f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import numpy as np
import PIL
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import torch
import easyocr
import os
from pathlib import Path
import cv2
import pandas as pd
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
#torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/BeautyIsTruthTruthisBeauty.JPG', 'BeautyIsTruthTruthisBeauty.JPG')
#torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/PleaseRepeatLouder.jpg', 'PleaseRepeatLouder.jpg')
#torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/ProhibitedInWhiteHouse.JPG', 'ProhibitedInWhiteHouse.JPG')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/AaronCWacker/Yggdrasil/master/images/20-Books.jpg','20-Books.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'COVID.png')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg')
torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg')
def draw_boxes(image, bounds, color='yellow', width=2):
draw = ImageDraw.Draw(image)
for bound in bounds:
p0, p1, p2, p3 = bound[0]
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
return image
def box_size(box):
points = box[0]
if len(points) == 4:
x1, y1 = points[0]
x2, y2 = points[2]
return abs(x1 - x2) * abs(y1 - y2)
else:
return 0
def box_position(box):
return (box[0][0][0] + box[0][2][0]) / 2, (box[0][0][1] + box[0][2][1]) / 2
def filter_temporal_profiles(temporal_profiles, period_index):
filtered_profiles = []
for profile in temporal_profiles:
filtered_profile = []
for t, text in profile:
# Remove all non-digit characters from text
filtered_text = ''.join(filter(str.isdigit, text))
# Insert period at the specified index
filtered_text = filtered_text[:period_index] + "." + filtered_text[period_index:]
try:
filtered_value = float(filtered_text)
except ValueError:
continue
filtered_profile.append((t, filtered_value))
filtered_profiles.append(filtered_profile)
return filtered_profiles
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-printed')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-printed').to(device)
def inference(video, lang, time_step, full_scan, number_filter, use_trocr, period_index):
output = 'results.mp4'
reader = easyocr.Reader(lang)
bounds = []
vidcap = cv2.VideoCapture(video)
success, frame = vidcap.read()
count = 0
frame_rate = vidcap.get(cv2.CAP_PROP_FPS)
output_frames = []
temporal_profiles = []
compress_mp4 = False
# Get the positions of the largest boxes in the first frame
bounds = reader.readtext(frame)
for i in reversed(range(len(bounds))):
box = bounds[i]
# Remove box if it doesn't contain a number
if not any(char.isdigit() for char in box[1]):
bounds.pop(i)
im = PIL.Image.fromarray(frame)
im_with_boxes = draw_boxes(im, bounds)
largest_boxes = sorted(bounds, key=lambda x: box_size(x), reverse=True)
positions = [box_position(b) for b in largest_boxes]
temporal_profiles = [[] for _ in range(len(largest_boxes))]
# Match bboxes to position and store the text read by OCR
while success:
if count % (int(frame_rate * time_step)) == 0:
if full_scan:
bounds = reader.readtext(frame)
for box in bounds:
bbox_pos = box_position(box)
for i, position in enumerate(positions):
distance = np.linalg.norm(np.array(bbox_pos) - np.array(position))
if distance < 50:
temporal_profiles[i].append((count / frame_rate, box[1]))
break
else:
for i, box in enumerate(largest_boxes):
x1, y1 = box[0][0]
x2, y2 = box[0][2]
box_width = x2 - x1
box_height = y2 - y1
ratio = 0.2
x1 = max(0, int(x1 - ratio * box_width))
x2 = min(frame.shape[1], int(x2 + ratio * box_width))
y1 = max(0, int(y1 - ratio * box_height))
y2 = min(frame.shape[0], int(y2 + ratio * box_height))
cropped_frame = frame[y1:y2, x1:x2]
if use_trocr:
pixel_values = processor(images=cropped_frame, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values.to(device))
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
temporal_profiles[i].append((count / frame_rate, generated_text))
else:
text = reader.readtext(cropped_frame)
if text:
temporal_profiles[i].append((count / frame_rate, text[0][1]))
im = PIL.Image.fromarray(frame)
im_with_boxes = draw_boxes(im, bounds)
output_frames.append(np.array(im_with_boxes))
success, frame = vidcap.read()
count += 1
if number_filter:
# Filter the temporal profiles by removing non-matching characters and converting to floats
temporal_profiles = filter_temporal_profiles(temporal_profiles, int(period_index))
# Default resolutions of the frame are obtained. The default resolutions are system dependent.
# We convert the resolutions from float to integer.
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames_total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
# Define the codec and create VideoWriter object.
if compress_mp4:
temp = f"{Path(output).stem}_temp{Path(output).suffix}"
output_video = cv2.VideoWriter(
temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
else:
output_video = cv2.VideoWriter(output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
for frame in output_frames:
output_video.write(frame)
# Draw boxes with box indices in the first frame of the output video
im = Image.fromarray(output_frames[0])
draw = ImageDraw.Draw(im)
font_size = 30
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
for i, box in enumerate(largest_boxes):
draw.text((box_position(box)), f"Box {i+1}", fill='red', font=ImageFont.truetype(font_path, font_size))
output_video.release()
vidcap.release()
if compress_mp4:
# Compressing the video for smaller size and web compatibility.
os.system(
f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}"
)
os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree")
# Format temporal profiles as a DataFrame
df_list = []
for i, profile in enumerate(temporal_profiles):
for t, text in profile:
df_list.append({"Box": f"Box {i+1}", "Time (s)": t, "Text": text})
df_list.append({"Box": f"", "Time (s)": "", "Text": ""})
df = pd.concat([pd.DataFrame(df_list)])
return output, im, df
title = '🖼️Video to Multilingual OCR👁️Gradio'
description = 'Multilingual OCR which works conveniently on all devices in multiple languages. Adjust time-step for inference and the scan mode according to your requirement. For `Full Screen Scan`, model scan the whole image if flag is ture, while scan only the box detected at the first video frame; this accelerate the inference while detecting the fixed box.'
article = "<p style='text-align: center'></p>"
examples = [
['test.mp4',['en'],10,]
]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
choices = [
"ch_sim",
"ch_tra",
"de",
"en",
"es",
"ja",
"hi",
"ru"
]
gr.Interface(
inference,
[
gr.inputs.Video(label='Input Video'),
gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='Language'),
gr.inputs.Number(label='Time Step (in seconds)', default=1.0),
gr.inputs.Checkbox(label='Full Screen Scan'),
gr.inputs.Checkbox(label='Use TrOCR large (this is only available when Full Screen Scan is disable)'),
gr.inputs.Checkbox(label='Number Filter (remove non-digit char and insert period)'),
gr.inputs.Textbox(label="period position",default=1)
],
[
gr.outputs.Video(label='Output Video'),
gr.outputs.Image(label='Output Preview', type='numpy'),
gr.outputs.Dataframe(headers=['Box', 'Time (s)', 'Text'], type='pandas'),
],
title=title,
description=description,
article=article,
examples=examples,
css=css,
enable_queue=True
).launch(debug=True) |