Spaces:
Runtime error
Runtime error
import numpy as np | |
import PIL | |
from PIL import Image, ImageDraw, ImageFont | |
import gradio as gr | |
import torch | |
import easyocr | |
import os | |
from pathlib import Path | |
import cv2 | |
import pandas as pd | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
import matplotlib.pyplot as plt | |
import io | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/AaronCWacker/Yggdrasil/master/images/20-Books.jpg','20-Books.jpg') | |
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'COVID.png') | |
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg') | |
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg') | |
torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg') | |
def plot_temporal_profile(temporal_profile): | |
fig = plt.figure() | |
for i, profile in enumerate(temporal_profile): | |
x, y = zip(*profile) | |
plt.plot(x, y, label=f"Box {i+1}") | |
plt.title("Temporal Profiles") | |
plt.xlabel("Time (s)") | |
plt.ylabel("Value") | |
plt.legend() | |
return fig | |
def draw_boxes(image, bounds, color='yellow', width=2): | |
draw = ImageDraw.Draw(image) | |
for bound in bounds: | |
p0, p1, p2, p3 = bound[0] | |
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) | |
return image | |
def box_size(box): | |
points = box[0] | |
if len(points) == 4: | |
x1, y1 = points[0] | |
x2, y2 = points[2] | |
return abs(x1 - x2) * abs(y1 - y2) | |
else: | |
return 0 | |
def box_position(box): | |
return (box[0][0][0] + box[0][2][0]) / 2, (box[0][0][1] + box[0][2][1]) / 2 | |
def filter_temporal_profiles(temporal_profiles, period_index): | |
filtered_profiles = [] | |
for profile in temporal_profiles: | |
filtered_profile = [] | |
for t, text in profile: | |
# Remove all non-digit characters from text | |
filtered_text = ''.join(filter(str.isdigit, text)) | |
# Insert period at the specified index | |
filtered_text = filtered_text[:period_index] + "." + filtered_text[period_index:] | |
try: | |
filtered_value = float(filtered_text) | |
except ValueError: | |
continue | |
filtered_profile.append((t, filtered_value)) | |
filtered_profiles.append(filtered_profile) | |
return filtered_profiles | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-printed') | |
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-printed').to(device) | |
def process_box(box, frame, enlarge_ratio): | |
x1, y1 = box[0][0] | |
x2, y2 = box[0][2] | |
enlarge_ratio = enlarge_ratio/2 | |
box_width = x2 - x1 | |
box_height = y2 - y1 | |
x1 = max(0, int(x1 - enlarge_ratio * box_width)) | |
x2 = min(frame.shape[1], int(x2 + enlarge_ratio * box_width)) | |
y1 = max(0, int(y1 - enlarge_ratio * box_height)) | |
y2 = min(frame.shape[0], int(y2 + enlarge_ratio * box_height)) | |
cropped_frame = frame[y1:y2, x1:x2] | |
return cropped_frame | |
def inference(video, lang, full_scan, number_filter, use_trocr, time_step, period_index, box_enlarge_ratio=0.4): | |
output = 'results.mp4' | |
reader = easyocr.Reader(lang) | |
bounds = [] | |
vidcap = cv2.VideoCapture(video) | |
success, frame = vidcap.read() | |
count = 0 | |
frame_rate = vidcap.get(cv2.CAP_PROP_FPS) | |
output_frames = [] | |
temporal_profiles = [] | |
compress_mp4 = True | |
# Get the positions of the largest boxes in the first frame | |
bounds = reader.readtext(frame) | |
for i in reversed(range(len(bounds))): | |
box = bounds[i] | |
# Remove box if it doesn't contain a number | |
if not any(char.isdigit() for char in box[1]): | |
bounds.pop(i) | |
im = PIL.Image.fromarray(frame) | |
im_with_boxes = draw_boxes(im, bounds) | |
largest_boxes = sorted(bounds, key=lambda x: box_size(x), reverse=True) | |
positions = [box_position(b) for b in largest_boxes] | |
temporal_profiles = [[] for _ in range(len(largest_boxes))] | |
# Match bboxes to position and store the text read by OCR | |
while success: | |
if count % (int(frame_rate * time_step)) == 0: | |
bounds = reader.readtext(frame) if full_scan else largest_boxes | |
for i, box in enumerate(bounds): | |
if full_scan: | |
# Match box to previous box | |
bbox_pos = box_position(box) | |
for i, position in enumerate(positions): | |
distance = np.linalg.norm(np.array(bbox_pos) - np.array(position)) | |
if distance < 50: | |
if use_trocr: | |
cropped_frame = process_box(box, frame, enlarge_ratio=box_enlarge_ratio) | |
pixel_values = processor(images=cropped_frame, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values.to(device)) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
temporal_profiles[i].append((count / frame_rate, generated_text)) | |
else: | |
temporal_profiles[i].append((count / frame_rate, box[1])) | |
else: | |
cropped_frame = process_box(box, frame, enlarge_ratio=box_enlarge_ratio) | |
if use_trocr: | |
pixel_values = processor(images=cropped_frame, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values.to(device)) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
temporal_profiles[i].append((count / frame_rate, generated_text)) | |
else: | |
text = reader.readtext(cropped_frame) | |
if text: | |
temporal_profiles[i].append((count / frame_rate, text[0][1])) | |
im = PIL.Image.fromarray(frame) | |
im_with_boxes = draw_boxes(im, bounds) | |
output_frames.append(np.array(im_with_boxes)) | |
success, frame = vidcap.read() | |
count += 1 | |
if number_filter: | |
# Filter the temporal profiles by removing non-matching characters and converting to floats | |
temporal_profiles = filter_temporal_profiles(temporal_profiles, int(period_index)) | |
# Default resolutions of the frame are obtained. The default resolutions are system dependent. | |
# We convert the resolutions from float to integer. | |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames_total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
# Define the codec and create VideoWriter object. | |
if compress_mp4: | |
temp = f"{Path(output).stem}_temp{Path(output).suffix}" | |
output_video = cv2.VideoWriter( | |
temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height) | |
) | |
else: | |
output_video = cv2.VideoWriter(output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) | |
for frame in output_frames: | |
output_video.write(frame) | |
# Draw boxes with box indices in the first frame of the output video | |
im = Image.fromarray(output_frames[0]) | |
draw = ImageDraw.Draw(im) | |
font_size = 50 | |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf" | |
for i, box in enumerate(largest_boxes): | |
draw.text((box_position(box)), f"{i+1}", fill='red', font=ImageFont.truetype(font_path, font_size)) | |
output_video.release() | |
vidcap.release() | |
if compress_mp4: | |
# Compressing the video for smaller size and web compatibility. | |
os.system( | |
f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}" | |
) | |
os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree") | |
# Format temporal profiles as a DataFrame | |
df_list = [] | |
for i, profile in enumerate(temporal_profiles): | |
for t, text in profile: | |
df_list.append({"Box": f"Box {i+1}", "Time (s)": t, "Text": text}) | |
df_list.append({"Box": f"", "Time (s)": "", "Text": ""}) | |
df = pd.concat([pd.DataFrame(df_list)]) | |
# Convert the Matplotlib plot to a NumPy array | |
plot_fig = plot_temporal_profile(temporal_profiles) | |
buf = io.BytesIO() | |
plot_fig.savefig(buf, format='png') | |
buf.seek(0) | |
plot_image = PIL.Image.open(buf) | |
# Resize the image to fit the width of the returned image | |
im_width, im_height = im.size | |
plot_width, plot_height = plot_image.size | |
new_plot_height = int(plot_height * im_width / plot_width) | |
resized_plot_image = plot_image.resize((im_width, new_plot_height), PIL.Image.ANTIALIAS) | |
# Convert the resized image to a NumPy array | |
plot_np = np.array(resized_plot_image) | |
# Close the buffer | |
buf.close() | |
return output, im, plot_np, df # Change this line | |
title = '🖼️Video to Multilingual OCR👁️Gradio' | |
description = 'Multilingual OCR which works conveniently on all devices in multiple languages. Adjust time-step for inference and the scan mode according to your requirement. For `Full Screen Scan`, model scan the whole image if flag is ture, while scan only the box detected at the first video frame; this accelerate the inference while detecting the fixed box.' | |
article = "<p style='text-align: center'></p>" | |
examples = [ | |
['test.mp4',['en'],False,True,True,10,1,0.4] | |
] | |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" | |
choices = [ | |
"ch_sim", | |
"ch_tra", | |
"de", | |
"en", | |
"es", | |
"ja", | |
"hi", | |
"ru" | |
] | |
gr.Interface( | |
inference, | |
[ | |
gr.inputs.Video(label='Input Video'), | |
gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='Language'), | |
gr.inputs.Checkbox(label='Full Screen Scan'), | |
gr.inputs.Checkbox(label='Use TrOCR large'), | |
gr.inputs.Checkbox(label='Number Filter (remove non-digit char and insert period)'), | |
gr.inputs.Number(label='Time Step (in seconds)', default=1.0), | |
gr.inputs.Number(label="period position",default=1), | |
gr.inputs.Number(label='Box enlarge ratio', default=0.4) | |
], | |
[ | |
gr.outputs.Video(label='Output Video'), | |
gr.outputs.Image(label='Output Preview', type='numpy'), | |
# gr.Plot(label='Temporal Profile'), | |
gr.outputs.Image(label='Temporal Profile', type='numpy'), | |
gr.outputs.Dataframe(headers=['Box', 'Time (s)', 'Text'], type='pandas') | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
enable_queue=True | |
).launch(debug=True, share=True) | |