File size: 4,278 Bytes
94b55f0
 
602d806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b55f0
 
602d806
94b55f0
602d806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os

import gradio as gr
from pdf2image import convert_from_path

import torch
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoProcessor

from custom_colbert.models.paligemma_colbert_architecture import ColPali
from custom_colbert.trainer.retrieval_evaluator import CustomEvaluator


def process_images(processor, images, max_length: int = 50):
    texts_doc = ["Describe the image."] * len(images)
    images = [image.convert("RGB") for image in images]

    batch_doc = processor(
        text=texts_doc,
        images=images,
        return_tensors="pt",
        padding="longest",
        max_length=max_length + processor.image_seq_length,
    )
    return batch_doc


def process_queries(processor, queries, mock_image, max_length: int = 50):
    texts_query = []
    for query in queries:
        query = f"Question: {query}<unused0><unused0><unused0><unused0><unused0>"
        texts_query.append(query)

    batch_query = processor(
        images=[mock_image.convert("RGB")] * len(texts_query),
        # NOTE: the image is not used in batch_query but it is required for calling the processor
        text=texts_query,
        return_tensors="pt",
        padding="longest",
        max_length=max_length + processor.image_seq_length,
    )
    del batch_query["pixel_values"]

    batch_query["input_ids"] = batch_query["input_ids"][..., processor.image_seq_length :]
    batch_query["attention_mask"] = batch_query["attention_mask"][..., processor.image_seq_length :]
    return batch_query


def search(query: str, ds, images) -> str:
    qs = []
    with torch.no_grad():
        batch_query = process_queries(processor, [query], mock_image)
        batch_query = {k: v.to(device) for k, v in batch_query.items()}
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    # run evaluation
    retriever_evaluator = CustomEvaluator(is_multi_vector=True)
    scores = retriever_evaluator.evaluate(qs, ds)

    return f"The most relevant page is {scores.argmax(axis=1)}",  images[scores.argmax(axis=1)]
    # return f"Query: {query}, most relevant page: 1, {len(ds)}", images[1]


def index(file):
    """Example script to run inference with ColPali"""
    images = []
    for f in file:
        images.extend(convert_from_path(f))

    # run inference - docs
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )
    for batch_doc in tqdm(dataloader):
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    return f"Uploaded and converted {len(images)} pages", ds, images


COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
# Load model
model_name = "coldoc/colpali-3b-mix-448"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token).eval()
model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name, token=token)
device = model.device
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))

with gr.Blocks() as demo:
    gr.Markdown("# PDF to πŸ€— Dataset")
    gr.Markdown("## 1️⃣ Upload PDFs")
    file = gr.File(file_types=["pdf"], file_count="multiple")

    gr.Markdown("## 2️⃣ Convert the PDFs and upload")
    convert_button = gr.Button("πŸ”„ Convert and upload")
    message = gr.Textbox("Files not yet uploaded")
    embeds = gr.State()
    imgs = gr.State()

    # Define the actions
    convert_button.click(
        index,
        inputs=[file],
        outputs=[message, embeds, imgs]
    )

    gr.Markdown("## 3️⃣ Search")
    query = gr.Textbox(placeholder="Enter your query here")
    search_button = gr.Button("πŸ” Search")
    message2 = gr.Textbox("Query not yet set")
    output_img = gr.Image()

    search_button.click(
        search, inputs=[query, embeds, imgs],
        outputs=[message2, output_img]
    )


if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)