import os import gradio as gr import torch from colpali_engine.models.paligemma_colbert_architecture import ColPali from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator from colpali_engine.utils.colpali_processing_utils import ( process_images, process_queries, ) import spaces from pdf2image import convert_from_path from PIL import Image from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoProcessor @spaces.GPU def search(query: str, ds, images, k): qs = [] with torch.no_grad(): batch_query = process_queries(processor, [query], mock_image) batch_query = {k: v.to(model.device) for k, v in batch_query.items()} embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) retriever_evaluator = CustomEvaluator(is_multi_vector=True) scores = retriever_evaluator.evaluate(qs, ds) top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] results = [] for idx in top_k_indices: results.append((images[idx], f"Page {idx}")) return results @spaces.GPU def index(files, ds): """Example script to run inference with ColPali""" images = [] for f in files: images.extend(convert_from_path(f)) if len(images) >= 150: raise gr.Error("The number of images in the dataset should be less than 150.") # run inference - docs dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=lambda x: process_images(processor, x), ) print(f"model device: {model.device}") for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()} print(f"model device: {model.device}") print(f"model device: {batch_doc["input_ids"]}") embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return f"Uploaded and converted {len(images)} pages", ds, images # Load model model_name = "vidore/colpali" token = os.environ.get("HF_TOKEN") model = ColPali.from_pretrained( "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval() model.load_adapter(model_name) processor = AutoProcessor.from_pretrained(model_name, token = token) mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚") gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark). ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449). This demo allows you to upload PDF files and search for the most relevant pages based on your query. Refresh the page if you change documents ! ⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages. Other models will be released with better robustness towards different languages and document formats ! """) with gr.Row(): with gr.Column(scale=2): gr.Markdown("## 1️⃣ Upload PDFs") file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs") convert_button = gr.Button("🔄 Index documents") message = gr.Textbox("Files not yet uploaded", label="Status") embeds = gr.State(value=[]) imgs = gr.State(value=[]) with gr.Column(scale=3): gr.Markdown("## 2️⃣ Search") query = gr.Textbox(placeholder="Enter your query here", label="Query") k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5) # Define the actions search_button = gr.Button("🔍 Search", variant="primary") output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True) convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery]) if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)