import os import gradio as gr import torch from pdf2image import convert_from_path from PIL import Image from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoProcessor from colpali_engine.models.paligemma_colbert_architecture import ColPali from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator from colpali_engine.utils.colpali_processing_utils import process_images, process_queries def search(query: str, ds, images): qs = [] with torch.no_grad(): batch_query = process_queries(processor, [query], mock_image) batch_query = {k: v.to(device) for k, v in batch_query.items()} embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) # run evaluation retriever_evaluator = CustomEvaluator(is_multi_vector=True) scores = retriever_evaluator.evaluate(qs, ds) best_page = int(scores.argmax(axis=1).item()) return f"The most relevant page is {best_page}", images[best_page] def index(file, ds): """Example script to run inference with ColPali""" images = [] for f in file: images.extend(convert_from_path(f)) # run inference - docs dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=lambda x: process_images(processor, x), ) for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return f"Uploaded and converted {len(images)} pages", ds, images COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"] # Load model model_name = "vidore/colpali" token = os.environ.get("HF_TOKEN") model = ColPali.from_pretrained( "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token ).eval() model.load_adapter(model_name) processor = AutoProcessor.from_pretrained(model_name, token=token) device = model.device mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚🔍") gr.Markdown("## 1️⃣ Upload PDFs") file = gr.File(file_types=["pdf"], file_count="multiple") gr.Markdown("## 2️⃣ Convert the PDFs and upload") convert_button = gr.Button("🔄 Convert and upload") message = gr.Textbox("Files not yet uploaded") embeds = gr.State(value=[]) imgs = gr.State(value=[]) # Define the actions convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) gr.Markdown("## 3️⃣ Search") query = gr.Textbox(placeholder="Enter your query here") search_button = gr.Button("🔍 Search") message2 = gr.Textbox("Query not yet set") output_img = gr.Image() search_button.click(search, inputs=[query, embeds, imgs], outputs=[message2, output_img]) if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)