import os import gradio as gr import torch from colpali_engine.models.paligemma_colbert_architecture import ColPali from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator from colpali_engine.utils.colpali_processing_utils import ( process_images, process_queries, ) import spaces from pdf2image import convert_from_path from PIL import Image from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoProcessor @spaces.GPU def search(query: str, ds, images, k): qs = [] with torch.no_grad(): batch_query = process_queries(processor, [query], mock_image) batch_query = {k: v.to(device) for k, v in batch_query.items()} embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) retriever_evaluator = CustomEvaluator(is_multi_vector=True) scores = retriever_evaluator.evaluate(qs, ds) top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] results = [] for idx in top_k_indices: results.append((images[idx], f"Page {idx}")) return results @spaces.GPU def index(files, ds): """Example script to run inference with ColPali""" images = [] for f in files: images.extend(convert_from_path(f)) if len(images) >= 150: raise gr.Error("The number of images in the dataset should be less than 150.") # run inference - docs dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=lambda x: process_images(processor, x), ) for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return f"Uploaded and converted {len(images)} pages", ds, images # Load model model_name = "vidore/colpali" token = os.environ.get("HF_TOKEN") model = ColPali.from_pretrained( "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval() model.load_adapter(model_name) processor = AutoProcessor.from_pretrained(model_name, token = token) device = model.device mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚") gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark). ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449). This demo allows you to upload PDF files and search for the most relevant pages based on your query. Refresh the page if you change documents ! """) with gr.Row(): with gr.Column(scale=2): gr.Markdown("## 1️⃣ Upload PDFs") file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs") convert_button = gr.Button("🔄 Index documents") message = gr.Textbox("Files not yet uploaded", label="Status") embeds = gr.State(value=[]) imgs = gr.State(value=[]) with gr.Column(scale=3): gr.Markdown("## 2️⃣ Search") query = gr.Textbox(placeholder="Enter your query here", label="Query") k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=3) # Define the actions search_button = gr.Button("🔍 Search", variant="primary") output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True) convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery]) if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)