Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 16,569 Bytes
57a1960 f2644a0 57a1960 855165f 95a7ca7 57a1960 95a7ca7 57a1960 c5cecd5 57a1960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import gradio as gr
import numpy as np
import os
import json
import subprocess
from PIL import Image
from functools import partial
from datetime import datetime
from sam_inference import get_sam_predictor, sam_seg
from utils import blend_seg, blend_seg_pure
import cv2
import uuid
import torch
import trimesh
from huggingface_hub import snapshot_download
from gradio_model3dcolor import Model3DColor
# from gradio_model3dnormal import Model3DNormal
code_dir = snapshot_download("sudo-ai/MeshFormer-API", token=os.environ['HF_TOKEN'])
with open(f'{code_dir}/api.json', 'r') as file:
api_dict = json.load(file)
SEG_CMD = api_dict["SEG_CMD"]
MESH_CMD = api_dict["MESH_CMD"]
STYLE = """
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN" crossorigin="anonymous">
"""
# info (info-circle-fill), cursor (hand-index-thumb), wait (hourglass-split), done (check-circle)
ICONS = {
"info": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-info-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M8 16A8 8 0 1 0 8 0a8 8 0 0 0 0 16zm.93-9.412-1 4.705c-.07.34.029.533.304.533.194 0 .487-.07.686-.246l-.088.416c-.287.346-.92.598-1.465.598-.703 0-1.002-.422-.808-1.319l.738-3.468c.064-.293.006-.399-.287-.47l-.451-.081.082-.381 2.29-.287zM8 5.5a1 1 0 1 1 0-2 1 1 0 0 1 0 2z"/>
</svg>""",
"cursor": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-hand-index-thumb-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M8.5 1.75v2.716l.047-.002c.312-.012.742-.016 1.051.046.28.056.543.18.738.288.273.152.456.385.56.642l.132-.012c.312-.024.794-.038 1.158.108.37.148.689.487.88.716.075.09.141.175.195.248h.582a2 2 0 0 1 1.99 2.199l-.272 2.715a3.5 3.5 0 0 1-.444 1.389l-1.395 2.441A1.5 1.5 0 0 1 12.42 16H6.118a1.5 1.5 0 0 1-1.342-.83l-1.215-2.43L1.07 8.589a1.517 1.517 0 0 1 2.373-1.852L5 8.293V1.75a1.75 1.75 0 0 1 3.5 0z"/>
</svg>""",
"wait": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-hourglass-split flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M2.5 15a.5.5 0 1 1 0-1h1v-1a4.5 4.5 0 0 1 2.557-4.06c.29-.139.443-.377.443-.59v-.7c0-.213-.154-.451-.443-.59A4.5 4.5 0 0 1 3.5 3V2h-1a.5.5 0 0 1 0-1h11a.5.5 0 0 1 0 1h-1v1a4.5 4.5 0 0 1-2.557 4.06c-.29.139-.443.377-.443.59v.7c0 .213.154.451.443.59A4.5 4.5 0 0 1 12.5 13v1h1a.5.5 0 0 1 0 1h-11zm2-13v1c0 .537.12 1.045.337 1.5h6.326c.216-.455.337-.963.337-1.5V2h-7zm3 6.35c0 .701-.478 1.236-1.011 1.492A3.5 3.5 0 0 0 4.5 13s.866-1.299 3-1.48V8.35zm1 0v3.17c2.134.181 3 1.48 3 1.48a3.5 3.5 0 0 0-1.989-3.158C8.978 9.586 8.5 9.052 8.5 8.351z"/>
</svg>""",
"done": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-check-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16 0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384 7.323a.75.75 0 0 0-1.06 1.06L6.97 11.03a.75.75 0 0 0 1.079-.02l3.992-4.99a.75.75 0 0 0-.01-1.05z"/>
</svg>""",
}
icons2alert = {
"info": "primary", # blue
"cursor": "info", # light blue
"wait": "secondary", # gray
"done": "success", # green
}
def message(text, icon_type="info"):
return f"""{STYLE} <div class="alert alert-{icons2alert[icon_type]} d-flex align-items-center" role="alert"> {ICONS[icon_type]}
<div>
{text}
</div>
</div>"""
def preprocess(tmp_dir, input_img, idx=None):
if idx is not None:
print("image idx:", int(idx))
input_img = Image.open(input_img[int(idx)]["name"])
input_img.save(f"{tmp_dir}/input.png")
# print(SEG_CMD.format(tmp_dir=tmp_dir))
os.system(SEG_CMD.format(tmp_dir=tmp_dir))
processed_img = Image.open(f"{tmp_dir}/seg.png")
return processed_img.resize((320, 320), Image.Resampling.LANCZOS)
def ply_to_glb(ply_path):
result = subprocess.run(
["python", "ply2glb.py", "--", ply_path],
capture_output=True,
text=True,
)
print("Output of blender script:")
print(result.stdout)
glb_path = ply_path.replace(".ply", ".glb")
return glb_path
def mesh_gen(tmp_dir, simplify, num_inference_steps):
# print(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
os.system(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
mesh = trimesh.load_mesh(f"{tmp_dir}/mesh.ply")
vertex_normals = mesh.vertex_normals
theta = np.radians(90) # Rotation angle in radians
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
rotation_matrix = np.array([
[cos_theta, -sin_theta, 0],
[sin_theta, cos_theta, 0],
[0, 0, 1]
])
rotated_normal = np.dot(vertex_normals, rotation_matrix.T)
rotated_normal = rotated_normal / np.linalg.norm(rotated_normal)
colors = (-vertex_normals + 1) / 2.0
colors = (colors * 255).astype(np.uint8) # Convert to 8-bit color
# print(colors.shape)
mesh.visual.vertex_colors = colors[..., [2, 1, 0]] # RGB -> BGR
mesh.export(f"{tmp_dir}/mesh_normal.ply", file_type="ply")
color_path = ply_to_glb(f"{tmp_dir}/mesh.ply")
normal_path = ply_to_glb(f"{tmp_dir}/mesh_normal.ply")
return color_path, normal_path
def create_tmp_dir():
tmp_dir = (
"demo_exp/"
+ datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
+ "_"
+ str(uuid.uuid4())[:4]
)
os.makedirs(tmp_dir, exist_ok=True)
print("create tmp_exp_dir", tmp_dir)
return tmp_dir
def vis_seg(checkbox):
if checkbox:
print("Show manual seg windows")
return (
[gr.Image(value=None, visible=True)] * 2
+ [gr.Radio(visible=True)]
+ [[], gr.Checkbox(visible=True)]
)
else:
print("Clear manual seg")
return (
[gr.Image(visible=False)] * 2
+ [gr.Radio(visible=False)]
+ [[], gr.Checkbox(visible=False)]
)
def calc_feat(checkbox, predictor, input_image, idx=None):
if checkbox:
if idx is not None:
print("image idx:", int(idx))
input_image = Image.open(input_image[int(idx)]["name"])
input_image.thumbnail([512, 512], Image.Resampling.LANCZOS)
w, h = input_image.size
print("image size:", w, h)
side_len = np.max((w, h))
seg_in = Image.new(input_image.mode, (side_len, side_len), (255, 255, 255))
seg_in.paste(
input_image, (np.max((0, (h - w) // 2)), np.max((0, (w - h) // 2)))
)
print("Calculating image SAM feature...")
predictor.set_image(np.array(seg_in.convert("RGB")))
torch.cuda.empty_cache()
return gr.Image(value=seg_in, visible=True)
else:
print("Quit manual seg")
raise ValueError("Quit manual seg")
def manual_seg(
predictor,
seg_in,
selected_points,
fg_bg_radio,
tmp_dir,
seg_mask_opt,
evt: gr.SelectData,
):
print("Start segmentation")
selected_points.append(
{"coord": evt.index, "add_del": fg_bg_radio == "+ (add mask)"}
)
input_points = np.array([point["coord"] for point in selected_points])
input_labels = np.array([point["add_del"] for point in selected_points])
out_image = sam_seg(
predictor, np.array(seg_in.convert("RGB")), input_points, input_labels
)
# seg_in.save(f"{tmp_dir}/in.png")
# out_image.save(f"{tmp_dir}/out.png")
if seg_mask_opt:
segmentation = blend_seg_pure(
seg_in.convert("RGB"), out_image, input_points, input_labels
)
else:
segmentation = blend_seg(
seg_in.convert("RGB"), out_image, input_points, input_labels
)
# recenter and rescale
image_arr = np.array(out_image)
ret, mask = cv2.threshold(
np.array(out_image.split()[-1]), 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
ratio = 0.75
side_len = int(max_size / ratio)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
padded_image[
center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w
] = image_arr[y : y + h, x : x + w]
rgba = Image.fromarray(padded_image)
rgba.save(f"{tmp_dir}/seg.png")
torch.cuda.empty_cache()
return segmentation.resize((380, 380), Image.Resampling.LANCZOS), rgba.resize(
(320, 320), Image.Resampling.LANCZOS
)
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200",
)
with gr.Blocks(title="MeshFormer Demo", css="style.css", theme=custom_theme) as demo:
with gr.Row():
gr.Markdown(
"# MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model"
)
with gr.Row():
gr.Markdown(
"[Project Page](https://meshformer3d.github.io/) | [arXiv](https://arxiv.org/abs/TBD)"
)
with gr.Row():
gr.Markdown(
"""
<div>
<b><em>Check out <a href="https://www.sudo.ai/3dgen">Hillbot (sudoAI)</a> for more details and advanced features.</em></b>
</div>
"""
)
with gr.Row():
guide_text_i2m = gr.HTML(message("Please input an image!"), visible=True)
tmp_dir_img = gr.State("./demo_exp/placeholder")
tmp_dir_txt = gr.State("./demo_exp/placeholder")
tmp_dir_3t3 = gr.State("./demo_exp/placeholder")
example_folder = os.path.join(os.path.dirname(__file__), "demo_examples")
example_fns = os.listdir(example_folder)
example_fns.sort()
img_examples = [
os.path.join(example_folder, x) for x in example_fns
] # if x.endswith('.png') or x.endswith('.')
with gr.Row(variant="panel"):
with gr.Row():
with gr.Column(scale=8):
input_image = gr.Image(
type="pil",
image_mode="RGBA",
height=320,
label="Input Image",
interactive=True,
)
gr.Examples(
examples=img_examples,
inputs=[input_image],
outputs=[input_image],
cache_examples=False,
label="Image Examples (Click one of the images below to start)",
examples_per_page=27,
)
with gr.Accordion("Options", open=False):
img_simplify = gr.Checkbox(
False, label="simplify the generated mesh", visible=False
)
n_steps_img = gr.Slider(
value=28,
minimum=15,
maximum=100,
step=1,
label="number of inference steps",
)
# manual segmentation
checkbox_manual_seg = gr.Checkbox(False, label="manual segmentation")
with gr.Row():
with gr.Column(scale=1):
seg_in = gr.Image(
type="pil",
image_mode="RGBA",
label="Click to segment",
visible=False,
show_download_button=False,
height=380,
)
with gr.Column(scale=1):
seg_out = gr.Image(
type="pil",
image_mode="RGBA",
label="Segmentation",
interactive=False,
visible=False,
show_download_button=False,
height=380,
elem_id="disp_image",
)
fg_bg_radio = gr.Radio(
["+ (add mask)", "- (remove area)"],
value="+ (add mask)",
info="Select foreground (+) or background (-) point",
label="Point label",
visible=False,
interactive=True,
)
seg_mask_opt = gr.Checkbox(
True,
label="show foreground mask in manual segmentation",
visible=False,
)
# run
img_run_btn = gr.Button(
"Generate", variant="primary", interactive=False
)
with gr.Column(scale=6):
processed_image = gr.Image(
type="pil",
label="Processed Image",
interactive=False,
height=320,
image_mode="RGBA",
elem_id="disp_image",
)
# with gr.Row():
# mesh_output = gr.Model3D(label="Generated Mesh", elem_id="model-3d-out")
mesh_output_normal = Model3DColor(
label="Generated Mesh (normal)",
elem_id="mesh-normal-out",
height=400,
)
mesh_output = Model3DColor(
label="Generated Mesh (color)",
elem_id="mesh-out",
height=400,
)
predictor = gr.State(value=get_sam_predictor())
selected_points = gr.State(value=[])
selected_points_t2i = gr.State(value=[])
disable_checkbox = lambda: gr.Checkbox(value=False)
disable_button = lambda: gr.Button(interactive=False)
enable_button = lambda: gr.Button(interactive=True)
update_guide = lambda GUIDE_TEXT, icon_type="info": gr.HTML(
value=message(GUIDE_TEXT, icon_type)
)
update_md = lambda GUIDE_TEXT: gr.Markdown(value=GUIDE_TEXT)
def is_img_clear(input_image):
if not input_image:
raise ValueError("Input image cleared.")
checkbox_manual_seg.change(
vis_seg,
inputs=[checkbox_manual_seg],
outputs=[seg_in, seg_out, fg_bg_radio, selected_points, seg_mask_opt],
queue=False,
).success(
calc_feat,
inputs=[checkbox_manual_seg, predictor, input_image],
outputs=[seg_in],
).success(
fn=create_tmp_dir, outputs=[tmp_dir_img], queue=False
)
seg_in.select(
manual_seg,
[predictor, seg_in, selected_points, fg_bg_radio, tmp_dir_img, seg_mask_opt],
[seg_out, processed_image],
)
input_image.change(disable_button, outputs=img_run_btn, queue=False).success(
disable_checkbox, outputs=checkbox_manual_seg, queue=False
).success(fn=is_img_clear, inputs=input_image, queue=False).success(
fn=create_tmp_dir, outputs=tmp_dir_img, queue=False
).success(
fn=partial(update_guide, "Preprocessing the image!", "wait"),
outputs=[guide_text_i2m],
queue=False,
).success(
fn=preprocess,
inputs=[tmp_dir_img, input_image],
outputs=[processed_image],
queue=True,
).success(
fn=partial(
update_guide,
"Click <b>Generate</b> to generate mesh! If the input image was not segmented accurately, please adjust it using <b>manual segmentation</b>.",
"cursor",
),
outputs=[guide_text_i2m],
queue=False,
).success(
enable_button, outputs=img_run_btn, queue=False
)
img_run_btn.click(
fn=partial(update_guide, "Generating the mesh!", "wait"),
outputs=[guide_text_i2m],
queue=False,
).success(
fn=mesh_gen,
inputs=[tmp_dir_img, img_simplify, n_steps_img],
outputs=[mesh_output, mesh_output_normal],
queue=True,
).success(
fn=partial(
update_guide,
"Successfully generated the mesh. (It might take a few seconds to load the mesh)",
"done",
),
outputs=[guide_text_i2m],
queue=False,
)
demo.queue().launch(
debug=True, share=False, inline=False, show_api=False, server_name="0.0.0.0"
)
|