Spaces:
Build error
Build error
File size: 9,317 Bytes
798f776 dcd2be7 798f776 dcd2be7 798f776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import sys
import numpy
import torch
import rembg
import urllib.request
from PIL import Image
import streamlit as st
import huggingface_hub
if 'HF_TOKEN' in os.environ:
huggingface_hub.login(os.environ['HF_TOKEN'])
img_example_counter = 0
iret_base = 'resources/examples'
iret = [
dict(rimageinput=os.path.join(iret_base, x), dispi=os.path.join(iret_base, x))
for x in sorted(os.listdir(iret_base))
]
class SAMAPI:
predictor = None
@staticmethod
@st.cache_resource
def get_instance(sam_checkpoint=None):
if SAMAPI.predictor is None:
if sam_checkpoint is None:
sam_checkpoint = "tmp/sam_vit_h_4b8939.pth"
if not os.path.exists(sam_checkpoint):
urllib.request.urlretrieve(
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
sam_checkpoint
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_type = "default"
from segment_anything import sam_model_registry, SamPredictor
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
SAMAPI.predictor = predictor
return SAMAPI.predictor
@staticmethod
def segment_api(rgb, mask=None, bbox=None, sam_checkpoint=None):
"""
Parameters
----------
rgb : np.ndarray h,w,3 uint8
mask: np.ndarray h,w bool
Returns
-------
"""
np = numpy
predictor = SAMAPI.get_instance(sam_checkpoint)
predictor.set_image(rgb)
if mask is None and bbox is None:
box_input = None
else:
# mask to bbox
if bbox is None:
y1, y2, x1, x2 = np.nonzero(mask)[0].min(), np.nonzero(mask)[0].max(), np.nonzero(mask)[1].min(), \
np.nonzero(mask)[1].max()
else:
x1, y1, x2, y2 = bbox
box_input = np.array([[x1, y1, x2, y2]])
masks, scores, logits = predictor.predict(
box=box_input,
multimask_output=True,
return_logits=False,
)
mask = masks[-1]
return mask
def image_examples(samples, ncols, return_key=None, example_text="Examples"):
global img_example_counter
trigger = False
with st.expander(example_text, True):
for i in range(len(samples) // ncols):
cols = st.columns(ncols)
for j in range(ncols):
idx = i * ncols + j
if idx >= len(samples):
continue
entry = samples[idx]
with cols[j]:
st.image(entry['dispi'])
img_example_counter += 1
with st.columns(5)[2]:
this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
trigger = trigger or this_trigger
if this_trigger:
trigger = entry[return_key]
return trigger
def segment_img(img: Image):
output = rembg.remove(img)
mask = numpy.array(output)[:, :, 3] > 0
sam_mask = SAMAPI.segment_api(numpy.array(img)[:, :, :3], mask)
segmented_img = Image.new("RGBA", img.size, (0, 0, 0, 0))
segmented_img.paste(img, mask=Image.fromarray(sam_mask))
return segmented_img
def segment_6imgs(zero123pp_imgs):
imgs = [zero123pp_imgs.crop([0, 0, 320, 320]),
zero123pp_imgs.crop([320, 0, 640, 320]),
zero123pp_imgs.crop([0, 320, 320, 640]),
zero123pp_imgs.crop([320, 320, 640, 640]),
zero123pp_imgs.crop([0, 640, 320, 960]),
zero123pp_imgs.crop([320, 640, 640, 960])]
segmented_imgs = []
for i, img in enumerate(imgs):
output = rembg.remove(img)
mask = numpy.array(output)[:, :, 3]
mask = SAMAPI.segment_api(numpy.array(img)[:, :, :3], mask)
data = numpy.array(img)[:,:,:3]
data[mask == 0] = [255, 255, 255]
segmented_imgs.append(data)
result = numpy.concatenate([
numpy.concatenate([segmented_imgs[0], segmented_imgs[1]], axis=1),
numpy.concatenate([segmented_imgs[2], segmented_imgs[3]], axis=1),
numpy.concatenate([segmented_imgs[4], segmented_imgs[5]], axis=1)
])
return Image.fromarray(result)
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
@st.cache_data
def check_dependencies():
reqs = []
try:
import diffusers
except ImportError:
import traceback
traceback.print_exc()
print("Error: `diffusers` not found.", file=sys.stderr)
reqs.append("diffusers==0.20.2")
else:
if not diffusers.__version__.startswith("0.20"):
print(
f"Warning: You are using an unsupported version of diffusers ({diffusers.__version__}), which may lead to performance issues.",
file=sys.stderr
)
print("Recommended version is `diffusers==0.20.2`.", file=sys.stderr)
try:
import transformers
except ImportError:
import traceback
traceback.print_exc()
print("Error: `transformers` not found.", file=sys.stderr)
reqs.append("transformers==4.29.2")
if torch.__version__ < '2.0':
try:
import xformers
except ImportError:
print("Warning: You are using PyTorch 1.x without a working `xformers` installation.", file=sys.stderr)
print("You may see a significant memory overhead when running the model.", file=sys.stderr)
if len(reqs):
print(f"Info: Fix all dependency errors with `pip install {' '.join(reqs)}`.")
@st.cache_resource
def load_zero123plus_pipeline():
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16
)
# Feel free to tune the scheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
if torch.cuda.is_available():
pipeline.to('cuda:0')
return pipeline
check_dependencies()
pipeline = load_zero123plus_pipeline()
SAMAPI.get_instance()
torch.set_grad_enabled(False)
st.title("Zero123++ Demo")
# st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
prog = st.progress(0.0, "Idle")
with st.form("imgform"):
pic = st.file_uploader("Upload an Image", key='imageinput', type=['png', 'jpg', 'webp'])
left, right = st.columns(2)
with left:
rem_input_bg = st.checkbox("Remove Input Background")
with right:
rem_output_bg = st.checkbox("Remove Output Background")
num_inference_steps = st.slider("Number of Inference Steps", 15, 100, 75)
st.caption("Diffusion Steps. For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
cfg_scale = st.slider("Classifier Free Guidance Scale", 1.0, 10.0, 4.0)
seed = st.text_input("Seed", "42")
submit = False
if st.form_submit_button("Submit"):
submit = True
results_container = st.container()
sample_got = image_examples(iret, 4, 'rimageinput')
if sample_got:
pic = sample_got
with results_container:
if sample_got or submit:
seed = int(seed)
torch.manual_seed(seed)
img = Image.open(pic)
left, right = st.columns(2)
with left:
st.image(img)
st.caption("Input Image")
prog.progress(0.1, "Preparing Inputs")
if rem_input_bg:
with right:
img = segment_img(img)
st.image(img)
st.caption("Input (Background Removed)")
img = expand2square(img, (127, 127, 127, 0))
pipeline.set_progress_bar_config(disable=True)
result = pipeline(
img,
num_inference_steps=num_inference_steps,
guidance_scale=cfg_scale,
generator=torch.Generator(pipeline.device).manual_seed(seed),
callback=lambda i, t, latents: prog.progress(0.1 + 0.8 * i / num_inference_steps, "Diffusion Step %d" % i)
).images[0]
prog.progress(0.9, "Post Processing")
left, right = st.columns(2)
with left:
st.image(result)
st.caption("Result")
if rem_output_bg:
result = segment_6imgs(result)
with right:
st.image(result)
st.caption("Result (Background Removed)")
prog.progress(1.0, "Idle")
|