File size: 9,274 Bytes
798f776
 
 
 
 
 
 
 
dcd2be7
798f776
 
dcd2be7
 
 
798f776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796d131
798f776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cff14e
 
 
 
 
 
 
 
 
 
 
 
 
 
798f776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import sys
import numpy
import torch
import rembg
import urllib.request
from PIL import Image
import streamlit as st
import huggingface_hub


if 'HF_TOKEN' in os.environ:
    huggingface_hub.login(os.environ['HF_TOKEN'])

img_example_counter = 0
iret_base = 'resources/examples'
iret = [
    dict(rimageinput=os.path.join(iret_base, x), dispi=os.path.join(iret_base, x))
    for x in sorted(os.listdir(iret_base))
]


class SAMAPI:
    predictor = None

    @staticmethod
    @st.cache_resource
    def get_instance(sam_checkpoint=None):
        if SAMAPI.predictor is None:
            if sam_checkpoint is None:
                sam_checkpoint = "tmp/sam_vit_h_4b8939.pth"
            if not os.path.exists(sam_checkpoint):
                os.makedirs('tmp', exist_ok=True)
                urllib.request.urlretrieve(
                    "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
                    sam_checkpoint
                )
            device = "cuda:0" if torch.cuda.is_available() else "cpu"
            model_type = "default"

            from segment_anything import sam_model_registry, SamPredictor

            sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
            sam.to(device=device)

            predictor = SamPredictor(sam)
            SAMAPI.predictor = predictor
        return SAMAPI.predictor

    @staticmethod
    def segment_api(rgb, mask=None, bbox=None, sam_checkpoint=None):
        """

        Parameters
        ----------
        rgb : np.ndarray h,w,3 uint8
        mask: np.ndarray h,w bool

        Returns
        -------

        """
        np = numpy
        predictor = SAMAPI.get_instance(sam_checkpoint)
        predictor.set_image(rgb)
        if mask is None and bbox is None:
            box_input = None
        else:
            # mask to bbox
            if bbox is None:
                y1, y2, x1, x2 = np.nonzero(mask)[0].min(), np.nonzero(mask)[0].max(), np.nonzero(mask)[1].min(), \
                                 np.nonzero(mask)[1].max()
            else:
                x1, y1, x2, y2 = bbox
            box_input = np.array([[x1, y1, x2, y2]])
        masks, scores, logits = predictor.predict(
            box=box_input,
            multimask_output=True,
            return_logits=False,
        )
        mask = masks[-1]
        return mask


def image_examples(samples, ncols, return_key=None, example_text="Examples"):
    global img_example_counter
    trigger = False
    with st.expander(example_text, True):
        for i in range(len(samples) // ncols):
            cols = st.columns(ncols)
            for j in range(ncols):
                idx = i * ncols + j
                if idx >= len(samples):
                    continue
                entry = samples[idx]
                with cols[j]:
                    st.image(entry['dispi'])
                    img_example_counter += 1
                    with st.columns(5)[2]:
                        this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
                    trigger = trigger or this_trigger
                    if this_trigger:
                        trigger = entry[return_key]
    return trigger


def segment_img(img: Image):
    output = rembg.remove(img)
    mask = numpy.array(output)[:, :, 3] > 0
    sam_mask = SAMAPI.segment_api(numpy.array(img)[:, :, :3], mask)
    segmented_img = Image.new("RGBA", img.size, (0, 0, 0, 0))
    segmented_img.paste(img, mask=Image.fromarray(sam_mask))
    return segmented_img


def segment_6imgs(zero123pp_imgs):
    imgs = [zero123pp_imgs.crop([0, 0, 320, 320]),
            zero123pp_imgs.crop([320, 0, 640, 320]),
            zero123pp_imgs.crop([0, 320, 320, 640]),
            zero123pp_imgs.crop([320, 320, 640, 640]),
            zero123pp_imgs.crop([0, 640, 320, 960]),
            zero123pp_imgs.crop([320, 640, 640, 960])]
    segmented_imgs = []
    for i, img in enumerate(imgs):
        output = rembg.remove(img)
        mask = numpy.array(output)[:, :, 3]
        mask = SAMAPI.segment_api(numpy.array(img)[:, :, :3], mask)
        data = numpy.array(img)[:,:,:3]
        data[mask == 0] = [255, 255, 255]
        segmented_imgs.append(data)
    result = numpy.concatenate([
        numpy.concatenate([segmented_imgs[0], segmented_imgs[1]], axis=1),
        numpy.concatenate([segmented_imgs[2], segmented_imgs[3]], axis=1),
        numpy.concatenate([segmented_imgs[4], segmented_imgs[5]], axis=1)
    ])
    return Image.fromarray(result)


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


@st.cache_data
def check_dependencies():
    reqs = []
    try:
        import diffusers
    except ImportError:
        import traceback
        traceback.print_exc()
        print("Error: `diffusers` not found.", file=sys.stderr)
        reqs.append("diffusers==0.20.2")
    else:
        if not diffusers.__version__.startswith("0.20"):
            print(
                f"Warning: You are using an unsupported version of diffusers ({diffusers.__version__}), which may lead to performance issues.",
                file=sys.stderr
            )
            print("Recommended version is `diffusers==0.20.2`.", file=sys.stderr)
    try:
        import transformers
    except ImportError:
        import traceback
        traceback.print_exc()
        print("Error: `transformers` not found.", file=sys.stderr)
        reqs.append("transformers==4.29.2")
    if torch.__version__ < '2.0':
        try:
            import xformers
        except ImportError:
            print("Warning: You are using PyTorch 1.x without a working `xformers` installation.", file=sys.stderr)
            print("You may see a significant memory overhead when running the model.", file=sys.stderr)
    if len(reqs):
        print(f"Info: Fix all dependency errors with `pip install {' '.join(reqs)}`.")


@st.cache_resource
def load_zero123plus_pipeline():
    from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
    pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
    torch_dtype=torch.float16
    )
    # Feel free to tune the scheduler
    pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
        pipeline.scheduler.config, timestep_spacing='trailing'
    )
    if torch.cuda.is_available():
        pipeline.to('cuda:0')
    return pipeline


check_dependencies()
pipeline = load_zero123plus_pipeline()
SAMAPI.get_instance()
torch.set_grad_enabled(False)

st.title("Zero123++ Demo")
# st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
prog = st.progress(0.0, "Idle")
pic = st.file_uploader("Upload an Image", key='imageinput', type=['png', 'jpg', 'webp'])
left, right = st.columns(2)
with left:
    rem_input_bg = st.checkbox("Remove Input Background")
with right:
    rem_output_bg = st.checkbox("Remove Output Background")
num_inference_steps = st.slider("Number of Inference Steps", 15, 100, 75)
st.caption("Diffusion Steps. For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
cfg_scale = st.slider("Classifier Free Guidance Scale", 1.0, 10.0, 4.0)
seed = st.text_input("Seed", "42")
submit = False
if st.button("Submit"):
    submit = True
results_container = st.container()
sample_got = image_examples(iret, 4, 'rimageinput')
if sample_got:
    pic = sample_got
with results_container:
    if sample_got or submit:
        seed = int(seed)
        torch.manual_seed(seed)
        img = Image.open(pic)
        left, right = st.columns(2)
        with left:
            st.image(img)
            st.caption("Input Image")
        prog.progress(0.1, "Preparing Inputs")
        if rem_input_bg:
            with right:
                img = segment_img(img)
                st.image(img)
                st.caption("Input (Background Removed)")
        img = expand2square(img, (127, 127, 127, 0))
        pipeline.set_progress_bar_config(disable=True)
        result = pipeline(
            img,
            num_inference_steps=num_inference_steps,
            guidance_scale=cfg_scale,
            generator=torch.Generator(pipeline.device).manual_seed(seed),
            callback=lambda i, t, latents: prog.progress(0.1 + 0.8 * i / num_inference_steps, "Diffusion Step %d" % i)
        ).images[0]
        prog.progress(0.9, "Post Processing")
        left, right = st.columns(2)
        with left:
            st.image(result)
            st.caption("Result")
        if rem_output_bg:
            result = segment_6imgs(result)
            with right:
                st.image(result)
                st.caption("Result (Background Removed)")
        prog.progress(1.0, "Idle")