unknown
commited on
Commit
β’
d5b5b3a
1
Parent(s):
32213ba
Lutece Vision Space
Browse files- app.py +81 -0
- sujetAI.svg +1 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
|
5 |
+
import json
|
6 |
+
|
7 |
+
import subprocess
|
8 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
+
|
10 |
+
# Function to load the model and processor
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model_and_processor():
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
config = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
|
15 |
+
config.vision_config.model_type = "davit"
|
16 |
+
model = AutoModelForCausalLM.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True).to(device).eval()
|
17 |
+
processor = AutoProcessor.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True)
|
18 |
+
return model, processor, device
|
19 |
+
|
20 |
+
# Function to generate answer
|
21 |
+
def generate_answer(model, processor, device, image, prompt):
|
22 |
+
task = "<FinanceQA>"
|
23 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
24 |
+
generated_ids = model.generate(
|
25 |
+
input_ids=inputs["input_ids"],
|
26 |
+
pixel_values=inputs["pixel_values"],
|
27 |
+
max_new_tokens=1024,
|
28 |
+
do_sample=False,
|
29 |
+
num_beams=3,
|
30 |
+
)
|
31 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
32 |
+
parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
|
33 |
+
return parsed_answer[task]
|
34 |
+
|
35 |
+
# Function to display config without nested expanders
|
36 |
+
def display_config(config, depth=0):
|
37 |
+
for key, value in config.items():
|
38 |
+
if isinstance(value, dict):
|
39 |
+
st.markdown(f"{' ' * depth}**{key}**:")
|
40 |
+
display_config(value, depth + 1)
|
41 |
+
else:
|
42 |
+
st.markdown(f"{' ' * depth}{key}: {value}")
|
43 |
+
|
44 |
+
# Streamlit app
|
45 |
+
def main():
|
46 |
+
st.set_page_config(page_title="Lutece-Vision-Base Demo", page_icon="πΌ", layout="wide", initial_sidebar_state="expanded")
|
47 |
+
|
48 |
+
# Title and description
|
49 |
+
st.title("πΌ Lutece-Vision-Base Demo")
|
50 |
+
st.markdown("Upload a financial document and ask questions about it!")
|
51 |
+
|
52 |
+
# Sidebar with SujetAI watermark
|
53 |
+
st.sidebar.image("sujetAI.svg", use_column_width=True)
|
54 |
+
st.sidebar.markdown("---")
|
55 |
+
st.sidebar.markdown("Our website : [sujet.ai](https://sujet.ai)")
|
56 |
+
|
57 |
+
# Load model and processor
|
58 |
+
model, processor, device = load_model_and_processor()
|
59 |
+
|
60 |
+
# File uploader for document
|
61 |
+
uploaded_file = st.file_uploader("π Upload a financial document", type=["png", "jpg", "jpeg"])
|
62 |
+
|
63 |
+
if uploaded_file is not None:
|
64 |
+
image = Image.open(uploaded_file).convert('RGB')
|
65 |
+
st.image(image, caption="Uploaded Document", use_column_width=True)
|
66 |
+
|
67 |
+
# Question input
|
68 |
+
question = st.text_input("β Ask a question about the document", "")
|
69 |
+
|
70 |
+
if st.button("π Generate Answer"):
|
71 |
+
with st.spinner("Generating answer..."):
|
72 |
+
answer = generate_answer(model, processor, device, image, question)
|
73 |
+
st.success(f"## π‘ {answer}")
|
74 |
+
|
75 |
+
# # Model configuration viewer
|
76 |
+
# with st.expander("π§ Model Configuration"):
|
77 |
+
# config_dict = model.config.to_dict()
|
78 |
+
# display_config(config_dict)
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
main()
|
sujetAI.svg
ADDED