import jax import flax import matplotlib.pyplot as plt import nmslib import numpy as np import os import streamlit as st from tempfile import NamedTemporaryFile from torchvision.transforms import Compose, Resize, ToPILImage from transformers import CLIPProcessor, FlaxCLIPModel from PIL import Image BASELINE_MODEL = "openai/clip-vit-base-patch32" # MODEL_PATH = "/home/shared/models/clip-rsicd/bs128x8-lr5e-6-adam/ckpt-1" MODEL_PATH = "flax-community/clip-rsicd-v2" # IMAGE_VECTOR_FILE = "/home/shared/data/vectors/test-baseline.tsv" # IMAGE_VECTOR_FILE = "/home/shared/data/vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv" IMAGE_VECTOR_FILE = "./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv" # IMAGES_DIR = "/home/shared/data/rsicd_images" IMAGES_DIR = "./images" 2 # @st.cache(allow_output_mutation=True) # def load_index(): # filenames, image_vecs = [], [] # fvec = open(IMAGE_VECTOR_FILE, "r") # for line in fvec: # cols = line.strip().split('\t') # filename = cols[0] # image_vec = np.array([float(x) for x in cols[1].split(',')]) # filenames.append(filename) # image_vecs.append(image_vec) # V = np.array(image_vecs) # index = nmslib.init(method='hnsw', space='cosinesimil') # index.addDataPointBatch(V) # index.createIndex({'post': 2}, print_progress=True) # return filenames, index @st.cache(allow_output_mutation=True) def load_model(): # model = FlaxCLIPModel.from_pretrained(MODEL_PATH) # processor = CLIPProcessor.from_pretrained(BASELINE_MODEL) model = FlaxCLIPModel.from_pretrained("flax-community/clip-rsicd-v2") processor = CLIPProcessor.from_pretrained("flax-community/clip-rsicd-v2") return model, processor def split_image(X): num_rows = X.shape[0] // 224 num_cols = X.shape[1] // 224 Xc = X[0 : num_rows * 224, 0 : num_cols * 224, :] patches = [] for j in range(num_rows): for i in range(num_cols): patches.append(Xc[j * 224 : (j + 1) * 224, i * 224 : (i + 1) * 224, :]) return num_rows, num_cols, patches def get_patch_probabilities(patches, searched_feature, image_preprocesor, model, processor): images = [image_preprocesor(patch) for patch in patches] text = "An aerial image of {:s}".format(searched_feature) inputs = processor(images=images, text=text, return_tensors="jax", padding=True) outputs = model(**inputs) probs = jax.nn.softmax(outputs.logits_per_text, axis=-1) probs_np = np.asarray(probs)[0] return probs_np def get_image_ranks(probs): temp = np.argsort(-probs) ranks = np.empty_like(temp) ranks[temp] = np.arange(len(probs)) return ranks def app(): model, processor = load_model() st.title("Find Features in Images") st.markdown(""" The CLIP model from OpenAI is trained in a self-supervised manner using contrastive learning to project images and caption text onto a common embedding space. We have fine-tuned the model using the RSICD dataset (10k images and ~50k captions from the remote sensing domain). This demo shows the ability of the model to find specific features (specified as text queries) in the image. As an example, say you wish to find the parts of the following image that contain a `beach`, `houses`, or `ships`. We partition the image into tiles of (224, 224) and report how likely each of them are to contain each text features. """) st.image("demo-images/st_tropez_1.png") st.image("demo-images/st_tropez_2.png") st.markdown(""" For this image and the queries listed above, our model reports that the two left tiles are most likely to contain a `beach`, the two top right tiles are most likely to contain `houses`, and the two bottom right tiles are likely to contain `boats`. You can try it yourself with your own photographs. [Unsplash](https://unsplash.com/s/photos/aerial-view) has some good aerial photographs. You will need to download from Unsplash to your computer and upload it to the demo app. """) with st.form(key="form_3"): buf = st.file_uploader("Upload Image for Analysis") searched_feature = st.text_input(label="Feature to find") submit_button = st.form_submit_button("Find") if submit_button: ftmp = NamedTemporaryFile() ftmp.write(buf.getvalue()) image = plt.imread(ftmp.name) if len(image.shape) != 3 and image.shape[2] != 3: st.error("Image should be an RGB image") if image.shape[0] < 224 or image.shape[1] < 224: st.error("Image should be at least (224 x 224") st.image(image, caption="Input Image") st.markdown("---") num_rows, num_cols, patches = split_image(image) image_preprocessor = Compose([ ToPILImage(), Resize(224) ]) num_rows, num_cols, patches = split_image(image) patch_probs = get_patch_probabilities( patches, searched_feature, image_preprocessor, model, processor) patch_ranks = get_image_ranks(patch_probs) for i in range(num_rows): row_patches = patches[i * num_cols : (i + 1) * num_cols] row_probs = patch_probs[i * num_cols : (i + 1) * num_cols] row_ranks = patch_ranks[i * num_cols : (i + 1) * num_cols] captions = ["p({:s})={:.3f}, rank={:d}".format(searched_feature, p, r + 1) for p, r in zip(row_probs, row_ranks)] st.image(row_patches, caption=captions)