import os import sys import tqdm import torch import torch.nn.functional as F import fairseq import soundfile as sf import numpy as np device = sys.argv[1] n_parts = int(sys.argv[2]) i_part = int(sys.argv[3]) if len(sys.argv) == 7: exp_dir, version, is_half = sys.argv[4], sys.argv[5], bool(sys.argv[6]) else: i_gpu, exp_dir = sys.argv[4], sys.argv[5] os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) version, is_half = sys.argv[6], bool(sys.argv[7]) def forward_dml(ctx, x, scale): ctx.scale = scale res = x.clone().detach() return res fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml model_path = "hubert_base.pt" wav_path = f"{exp_dir}/1_16k_wavs" out_path = f"{exp_dir}/3_feature256" if version == "v1" else f"{exp_dir}/3_feature768" os.makedirs(out_path, exist_ok=True) def read_wave(wav_path, normalize=False): wav, sr = sf.read(wav_path) assert sr == 16000 feats = torch.from_numpy(wav) feats = feats.half() if is_half else feats.float() feats = feats.mean(-1) if feats.dim() == 2 else feats feats = feats.view(1, -1) if normalize: with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) return feats print("Starting feature extraction...") models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( [model_path], suffix="", ) model = models[0] model = model.to(device) if device not in ["mps", "cpu"]: model = model.half() model.eval() todo = sorted(os.listdir(wav_path))[i_part::n_parts] n = max(1, len(todo) // 10) if len(todo) == 0: print( "An error occurred in the feature extraction, make sure you have provided the audios correctly." ) else: print(f"{len(todo)}") with tqdm.tqdm(total=len(todo)) as pbar: for idx, file in enumerate(todo): try: if file.endswith(".wav"): wav_file_path = os.path.join(wav_path, file) out_file_path = os.path.join(out_path, file.replace("wav", "npy")) if os.path.exists(out_file_path): continue feats = read_wave(wav_file_path, normalize=saved_cfg.task.normalize) padding_mask = torch.BoolTensor(feats.shape).fill_(False) inputs = { "source": feats.to(device), "padding_mask": padding_mask.to(device), "output_layer": 9 if version == "v1" else 12, } with torch.no_grad(): logits = model.extract_features(**inputs) feats = ( model.final_proj(logits[0]) if version == "v1" else logits[0] ) feats = feats.squeeze(0).float().cpu().numpy() if np.isnan(feats).sum() == 0: np.save(out_file_path, feats, allow_pickle=False) else: print(f"{file} - contains nan") pbar.set_description(f"Processing {file} {feats.shape}") except Exception as error: print(error) pbar.update(1) print("Feature extraction completed successfully!")