import os os.system('pip install transformers') os.system('pip install torch') # Import required libraries import torch import transformers import streamlit as st from transformers import pipeline # Initialize the Streamlit app st.set_page_config(layout="wide") st.header("Sentiment Analysis App") # Define the function for performing sentiment analysis def analyze_sentiment(text): # Load the pre-trained sentiment analysis model and tokenizer model = pipeline('sentiment-analysis') # Perform sentiment analysis on the input text result = model(text)[0]['label'] # Return the predicted sentiment label return result # Create the user input form col1, col2 = st.columns(2) with col1: text_input = st.text_area("Enter Text:", "", key="my_input") with col2: submitted = st.form_submit_button("Submit") # Display the sentiment analysis results if submitted: sentiment = analyze_sentiment(text_input) st.subheader("Sentiment Analysis Result:") st.write(f"**Predicted Sentiment:** {sentiment}")