import os import gdown as gdown import nltk import streamlit as st from nltk.tokenize import sent_tokenize from source.pipeline import MultiLabelPipeline, inputs_to_dataset def download_models(ids): """ Download all models. :param ids: name and links of models :return: """ # Download sentence tokenizer nltk.download('punkt') # Download model from drive if not stored locally for key in ids: if not os.path.isfile(f"model/{key}.pt"): url = f"https://drive.google.com/uc?id={ids[key]}" gdown.download(url=url, output=f"model/{key}.pt") @st.cache def load_labels(): """ Load model labels. :return: """ return [ "admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral" ] @st.cache(allow_output_mutation=True) def load_model(model_path): """ Load model and cache it. :param model_path: path to model :return: """ model = MultiLabelPipeline(model_path=model_path) return model # Page config st.set_page_config(layout="centered") st.title("Multiclass Emotion Classification") st.write("DeepMind Language Perceiver for Multiclass Emotion Classification (Eng). ") maintenance = False if maintenance: st.write("Unavailable for now (file downloads limit). ") else: # Variables ids = {'perceiver-go-emotions': st.secrets['model']} labels = load_labels() # Download all models from drive download_models(ids) # Display labels st.markdown(f"__Labels:__ {', '.join(labels)}") # Model selection left, right = st.columns([4, 2]) inputs = left.text_area('', max_chars=4096, value='This is a space about multiclass emotion classification. Write ' 'something here to see what happens!') model_path = right.selectbox('', options=[k for k in ids], index=0, help='Model to use. ') split = right.checkbox('Split into sentences', value=True) model = load_model(model_path=f"model/{model_path}.pt") right.write(model.device) if split: if not inputs.isspace() and inputs != "": with st.spinner('Processing text... This may take a while.'): left.write(model(inputs_to_dataset(sent_tokenize(inputs)), batch_size=1)) else: if not inputs.isspace() and inputs != "": with st.spinner('Processing text... This may take a while.'): left.write(model(inputs_to_dataset([inputs]), batch_size=1))