File size: 2,880 Bytes
00d036b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
### 1. Imports and class names setup ### 
import gradio as gr
import os
import torch
from model import create_effnetb0_model
from timeit import default_timer as timer
from typing import Tuple, Dict
from torchvision import transforms

# Setup class names
class_names = ["Happy", "Disgusted", "Suprised","Angry","Neutral","Sad","Fearful"]

# Create EffNetB2 model
effnetb0, effnetb0_transforms = create_effnetb0_model(
    num_classes=7, # len(class_names) would also work
)

# Load saved weights


# Load saved weights
effnetb0.load_state_dict(
    torch.load(
        f="models/efficientnet_b0.pth",
        map_location=torch.device("cpu"),  # load to CPU
    )
)

### 3. Predict function ###

# Create predict function
def predict(img) -> Tuple[Dict, float]:
    """Transforms and performs a prediction on img and returns prediction and time taken.
    """
    # Start the timer
    start_time = timer()
    
    # Transform the target image and add a batch dimension
    img = effnetb0_transforms(img).unsqueeze(0)
    
    # Put model into evaluation mode and turn on inference mode
    effnetb0.eval()
    with torch.inference_mode():
        # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
        pred_probs = torch.softmax(effnetb0(img), dim=1)
    
    # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
    pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
    
    # Calculate the prediction time
    pred_time = round(timer() - start_time, 5)
    
    # Return the prediction dictionary and prediction time 
    return pred_labels_and_probs, pred_time

example_list = [["examples/" + example] for example in os.listdir("examples")]

### 4. Gradio app ###

# Create title, description and article strings
title = "Emotion Detection App πŸ˜€πŸ˜πŸ˜°πŸ˜žπŸ€’πŸ˜²πŸ˜‘"
description = "An EfficientNetB0 computer vision model to classify images of emotions: Happy, Neutral, Sad, fearful, Angry, Suprised, Disgusted."
article = "Reference: [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."

import gradio as gr

demo = gr.Interface(fn=predict, # mapping function from input to output
                    inputs=gr.Image(type="pil"), # what are the inputs?
                    outputs=[gr.Label(num_top_classes=7, label="Predictions"), # what are the outputs?
                             gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
                    # Create examples list from "examples/" directory
                    examples=example_list, 
                    title=title,
                    description=description,
                    article=article).launch()