test / translate /app.js
supArs's picture
Upload 100 files
26c453d verified
raw
history blame
9.73 kB
//meta(not so imp) functions by vkc!
const modelURL = "https://teachablemachine.withgoogle.com/models/riOJKjJZ1/model.json";
const metadataURL = "https://teachablemachine.withgoogle.com/models/riOJKjJZ1/metadata.json";
let gttsBtn = document.getElementById('gtts-btn');
let cameraBtn = document.getElementById('camera-btn');
let uploadBtn = document.querySelector('#upload-btn');
let textArea = document.querySelector('#textarea');
let backBtn = document.querySelector("#back-btn")
let line = document.createElement('p');
line.className = "line"
line.id = "last-line"
line.innerHTML = `Ready to roll !`
textArea.appendChild(line)
line.scrollIntoView({
behavior: "smooth",
block: "end",
inline: "nearest"
});
// back btn
backBtn.addEventListener("click", function() {
window.location = '/'
})
let webcamON = false
//open github repo
document.querySelector('#webcam-banner').addEventListener('click', function() {
window.open('https://github.com/vivekkushalch/Indian-Sign-Language-Recognition-System/', '_blank');
})
// test function
async function addTestLines(totalLines) {
for (let i = 1; i < totalLines + 1; i++) {
let line = document.createElement('p');
line.className = "line"
line.innerHTML = `Hello`
textArea.appendChild(line)
line.scrollIntoView({
behavior: "smooth",
block: "end",
inline: "nearest"
});
}
}
// addTestLines(10);
// adds new line in transcript box
async function addNewTranslateLine(text) {
let lastLine = textArea.lastElementChild;
try {
document.querySelector('#last-line').id = '';
} catch (err) {
console.log(err)
}
let newLine = document.createElement('p');
newLine.innerHTML = text;
newLine.className = "line";
newLine.id = 'last-line';
textArea.appendChild(newLine);
newLine.scrollIntoView({
behavior: "smooth",
block: "end",
inline: "nearest"
})
}
// start sign prediction
// cameraBtn.addEventListener("click", function() {
// if (cameraBtn.style.background === '#62E6BF') {
// cameraBtn.style.background = "#EAF1C5"; //deactivate btn
// alert('stopping... Press OK')
// location.reload()
// } else {
// cameraBtn.style.background = "#62E6BF";
// document.getElementById("webcam-banner").style.display = "none"; // remove banner
// document.getElementById("canvas").style.display = "block"; // display web cam
// alert('starting.... Press OK')
// init();
// }
// });
// start sign prediction
cameraBtn.addEventListener("click", function() {
if (webcamON) {
location.reload()
} else {
webcamON = true
cameraBtn.style.background = "#62E6BF";
document.getElementById("webcam-banner").style.display = "none"; // remove banner
document.getElementById("canvas").style.display = "block"; // display web cam
alert('starting.... Press OK')
init();
}
})
// text to speach btn colour change
gttsBtn.addEventListener("click", function() {
if (gttsBtn.style.backgroundColor === 'rgb(212, 236, 126)') {
gttsBtn.style.background = "#EAF1C5"; //dactivate btn
// alert('stopping... Press OK')
// location.reload()
} else {
gttsBtn.style.background = "#62E6BF";
// alert('starting.... Press OK')
// init();
}
});
let file;
async function predictImage(file) {
const modelURL = 'https://teachablemachine.withgoogle.com/models/riOJKjJZ1/';
const model = await tmImage.load(modelURL + 'model.json', modelURL + 'metadata.json');
const imagePreview = document.getElementsByClassName('webcam-view');
const reader = new FileReader();
reader.readAsDataURL(file);
reader.onload = async() => {
imagePreview.src = reader.result;
const imageElement = document.createElement('img');
imageElement.src = reader.result;
const prediction = await model.predict(imageElement);
addNewTranslateLine(predictions)
console.log(prediction);
};
};
//upload img
uploadBtn.addEventListener('click', function() {
uploadBtn.style.background = "#62E6BF";
uploadBtn.style.background = ""
const fileInput = document.querySelector('#file-input');
fileInput.click()
fileInput.addEventListener('change', async(event) => {
file = event.target.files[0];
if (!file) {
console.error('No file selected.');
return;
}
})
predictImage(file)
// let fileInput = document.querySelector('#file-input')
// fileInput.click();
// fileInput.addEventListener('change', async(event) => {
// const file = event.target.files[0];
// if (!file) {
// console.error('No file selected.');
// return;
// }
// const reader = new FileReader();
// reader.readAsDataURL(file);
// reader.onload = async() => {
// let img = document.createElement('img')
// img.className = 'webcam-view'
// document.querySelector(".webcam-view").appendChild(img).src = reader.result;
// //predict image
// model = window.tmImage.load(modelURL, metadataURL);
// let flip = true;
// // maxPredictions = model.getTotalClasses();
// const prediction = await model.predict(img);
// console.log(prediction)
// addNewTranslateLine(prediction)
// };
// reader.onerror = (error) => {
// console.error(error);
// };
// });
})
//text to speech
async function tts(text) {
if ('speechSynthesis' in window) {
// Speech Synthesis is supported 🎉
console.log('');
} else {
alert('Text to speech not available 😞');
location.reload();
}
let msg = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(msg);
}
// delay function
const delay = ms => new Promise(res => setTimeout(res, ms));
/////////////////////////////////////
let index = 0
const spamFilter = ['I', `❤️`, 'I', 'N', 'D', 'I', 'A']
let beforeTextDone = 0;
/////////////////////////////////////
// tensorflow.js magic /////////////
////////////////////////////////////
let model, webcam, ctox, labelContainer, maxPredictions;
async function init() {
//hello, welcome, thankyou, iloveu {>= 0.95}
// const modelURL = "https://storage.googleapis.com/tm-model/C2gYk6JPd/model.json";
// const metadataURL = "https://storage.googleapis.com/tm-model/C2gYk6JPd/metadata.json";
//1,2,3,4,5{==1.0 meh}
// const modelURL = "https://storage.googleapis.com/tm-model/qWNVsgTyJ/model.json";
// const metadataURL = "https://storage.googleapis.com/tm-model/qWNVsgTyJ/metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip 180
await webcam.setup(); // request access to the webcam
await webcam.play();
window.requestAnimationFrame(loop);
// append elements to the DOM
document.querySelector(".webcam-view").appendChild(webcam.canvas).className = 'canvas';
labelContainer = document.getElementById("last-line");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
async function loop() {
webcam.update(); // update the webcam frame
await predict();
window.requestAnimationFrame(loop);
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
const prediction = await model.predict(webcam.canvas);
for (let i = 0; i < maxPredictions; i++) {
// if (prediction[i].probability.toFixed(2) == 1.00) {
// console.log(prediction[i].probability.toFixed(2), prediction[i].className)
// }
// const classPrediction = prediction[i].className + ": " + prediction[i].probability.toFixed(2);
console.log(prediction[i].probability.toFixed(2), prediction[i].className)
if (prediction[i].probability.toFixed(2) == 1.0) {
if (prediction[i].className == spamFilter[index]) {
index += 1;
if (index == spamFilter.length) {
index = 0;
}
if (document.querySelector('#last-line').innerHTML != prediction[i].className) {
await addNewTranslateLine(prediction[i].className);
if (gttsBtn.style.backgroundColor === 'rgb(212, 236, 126)') { //btn active
await tts(prediction[i].className)
// delay(0)
} else {
console.log('')
}
}
}
// labelContainer.childNodes[i].innerHTML = prediction[i].className;
}
}
// for (let i = 0; i < maxPredictions; i++) {
// const classPrediction =
// prediction[i].className + ": " + prediction[i].probability.toFixed(2);
// labelContainer.childNodes[i].innerHTML = classPrediction;
// }
}