File size: 4,203 Bytes
4d3c01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import sys
import os

import flask
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import copy
import cv2
import random
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

from re import I
from flask import Flask, render_template, request, redirect, url_for, flash, jsonify
from flask_cors import CORS, cross_origin
from flask import send_from_directory
import base64
from PIL import Image
from io import BytesIO

app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'

# Disable tensorflow compilation warnings
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#import tensorflow as tf

def predict(image_data):

    predictions = sess.run(softmax_tensor, \
             {'DecodeJpeg/contents:0': image_data})

    # Sort to show labels of first prediction in order of confidence
    top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]

    max_score = 0.0
    res = ''
    for node_id in top_k:
        human_string = label_lines[node_id]
        score = predictions[0][node_id]
        if score > max_score:
            max_score = score
            res = human_string
    return res, max_score

# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
                   in tf.gfile.GFile("logs/trained_labels.txt")]

# Unpersists graph from file
with tf.gfile.FastGFile("logs/trained_graph.pb", 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    _ = tf.import_graph_def(graph_def, name='')


sess = tf.Session()
    # Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')

def imageRead (random_name):
    c = 0
    global sess
    global softmax_tensor
    
    #cap = cv2.VideoCapture(0)

    res, score = '', 0.0
    i = 0
    mem = ''
    consecutive = 0
    sequence = ''

    while True:
        img = cv2.imread('temp_img/'+random_name)
        img = cv2.flip(img, 1)
        
        
        #x1, y1, x2, y2 = 200, 200, 600, 600
        #img_cropped = img[y1:y2, x1:x2]

        c += 1
        image_data = cv2.imencode('.jpg', img)[1].tostring()
        
        a = cv2.waitKey(1) # waits to see if `esc` is pressed
        
        res_tmp, score = predict(image_data)
        res = res_tmp
       
        print(res)
        return res;
            #cv2.putText(img, '%s' % (res.upper()), (100,400), cv2.FONT_HERSHEY_SIMPLEX, 4, (255,255,255), 4)
            #cv2.putText(img, '(score = %.5f)' % (float(score)), (100,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255))
            #mem = res
            #cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 2)
            #cv2.imshow("img", img)
            #img_sequence = np.zeros((200,1200,3), np.uint8)
            #cv2.putText(img_sequence, '%s' % (sequence.upper()), (30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)
            #cv2.imshow('sequence', img_sequence)
            
        #if a == 27: # when `esc` is pressed
        #    break

@app.route('/image', methods=['GET', 'POST'])
@cross_origin()
def image():
    req = request.get_json()
    random_name = "test" + '.jpg'
    image_data = req['image_data'].split(',')[1]
    im = Image.open(BytesIO(base64.b64decode(image_data)))
    im.save('temp_img/'+random_name, 'JPEG')
    
    imageData = imageRead(random_name)
    return '{"status":1, "value": "'+imageData+'"}';

@app.route('/')
@cross_origin()
def homePage():
    return render_template('index.html')

@app.route("/audio/<path:path>")
def static_dir(path):
    return flask.send_file("templates/audio/" + path)

@app.route('/image-upload', methods=['GET', 'POST'])
@cross_origin()
def imageUpload():
    req = request.get_json()
    random_name = str( random.randint(1, 9999999) )+ '.jpg'
    image_data = req['image_data'].split(',')[1]
    im = Image.open(BytesIO(base64.b64decode(image_data)))
    im.save('temp_img/'+random_name, 'JPEG')
    
    imageData = imageRead(random_name)
    return '{"status":1, "value": "'+imageData+'"}';


if __name__ == '__main__':
    app.run(debug=True)

# Following line should... <-- This should work fine now
# cv2.destroyAllWindows() 
# cv2.VideoCapture(0).release()