|
import tensorflow as tf |
|
import sys |
|
import os |
|
|
|
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' |
|
import tensorflow as tf |
|
|
|
image_path = sys.argv[1] |
|
|
|
|
|
image_data = tf.gfile.FastGFile(image_path, 'rb').read() |
|
|
|
|
|
|
|
label_lines = [line.rstrip() for line |
|
in tf.gfile.GFile("logs/output_labels.txt")] |
|
|
|
|
|
with tf.gfile.FastGFile("logs/output_graph.pb", 'rb') as f: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
_ = tf.import_graph_def(graph_def, name='') |
|
|
|
with tf.Session() as sess: |
|
|
|
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') |
|
|
|
predictions = sess.run(softmax_tensor, \ |
|
{'DecodeJpeg/contents:0': image_data}) |
|
|
|
|
|
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1] |
|
|
|
for node_id in top_k: |
|
human_string = label_lines[node_id] |
|
score = predictions[0][node_id] |
|
print('%s (score = %.5f)' % (human_string, score)) |
|
|