import gradio as gr
import PIL.Image
import skimage.io as io
from tqdm import tqdm, trange
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from typing import Tuple, List, Union, Optional
import sys
import torch.nn.functional as nnf
import torch
import numpy as np
from torch import nn
import clip
from huggingface_hub import hf_hub_download
import os

conceptual_weight = hf_hub_download(
    repo_id="akhaliq/CLIP-prefix-captioning-conceptual-weights", filename="conceptual_weights.pt")
coco_weight = hf_hub_download(
    repo_id="akhaliq/CLIP-prefix-captioning-COCO-weights", filename="coco_weights.pt")

N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]


D = torch.device
CPU = torch.device('cpu')


def get_device(device_id: int) -> D:
    if not torch.cuda.is_available():
        return CPU
    device_id = min(torch.cuda.device_count() - 1, device_id)
    return torch.device(f'cuda:{device_id}')


CUDA = get_device


class MLP(nn.Module):

    def forward(self, x: T) -> T:
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) - 1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)


class ClipCaptionModel(nn.Module):

    # @functools.lru_cache #FIXME
    def get_dummy_token(self, batch_size: int, device: D) -> T:
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(
            prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
        # print(embedding_text.size()) #torch.Size([5, 67, 768])
        # print(prefix_projections.size()) #torch.Size([5, 1, 768])
        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat,
                       labels=labels, attention_mask=mask)
        return out

    def __init__(self, prefix_length: int, prefix_size: int = 512):
        super(ClipCaptionModel, self).__init__()
        self.prefix_length = prefix_length
        self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        if prefix_length > 10:  # not enough memory
            self.clip_project = nn.Linear(
                prefix_size, self.gpt_embedding_size * prefix_length)
        else:
            self.clip_project = MLP((prefix_size, (self.gpt_embedding_size *
                                    prefix_length) // 2, self.gpt_embedding_size * prefix_length))


class ClipCaptionPrefix(ClipCaptionModel):

    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()
        return self


# @title Caption prediction

def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
                  entry_length=67, temperature=1., stop_token: str = '.'):

    model.eval()
    stop_token_index = tokenizer.encode(stop_token)[0]
    tokens = None
    scores = None
    device = next(model.parameters()).device
    seq_lengths = torch.ones(beam_size, device=device)
    is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
    with torch.no_grad():
        if embed is not None:
            generated = embed
        else:
            if tokens is None:
                tokens = torch.tensor(tokenizer.encode(prompt))
                tokens = tokens.unsqueeze(0).to(device)
                generated = model.gpt.transformer.wte(tokens)
        for i in range(entry_length):
            outputs = model.gpt(inputs_embeds=generated)
            logits = outputs.logits
            logits = logits[:, -1, :] / \
                (temperature if temperature > 0 else 1.0)
            logits = logits.softmax(-1).log()
            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                generated = generated.expand(beam_size, *generated.shape[1:])
                next_tokens, scores = next_tokens.permute(
                    1, 0), scores.squeeze(0)
                if tokens is None:
                    tokens = next_tokens
                else:
                    tokens = tokens.expand(beam_size, *tokens.shape[1:])
                    tokens = torch.cat((tokens, next_tokens), dim=1)
            else:
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.view(
                    -1).topk(beam_size, -1)
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                tokens = tokens[next_tokens_source]
                tokens = torch.cat((tokens, next_tokens), dim=1)
                generated = generated[next_tokens_source]
                scores = scores_sum_average * seq_lengths
                is_stopped = is_stopped[next_tokens_source]
            next_token_embed = model.gpt.transformer.wte(
                next_tokens.squeeze()).view(generated.shape[0], 1, -1)
            generated = torch.cat((generated, next_token_embed), dim=1)
            is_stopped = is_stopped + \
                next_tokens.eq(stop_token_index).squeeze()
            if is_stopped.all():
                break
    scores = scores / seq_lengths
    output_list = tokens.cpu().numpy()
    output_texts = [tokenizer.decode(output[:int(length)])
                    for output, length in zip(output_list, seq_lengths)]
    order = scores.argsort(descending=True)
    output_texts = [output_texts[i] for i in order]
    return output_texts


def generate2(
        model,
        tokenizer,
        tokens=None,
        prompt=None,
        embed=None,
        entry_count=1,
        entry_length=67,  # maximum number of words
        top_p=0.8,
        temperature=1.,
        stop_token: str = '.',
):
    model.eval()
    generated_num = 0
    generated_list = []
    stop_token_index = tokenizer.encode(stop_token)[0]
    filter_value = -float("Inf")
    device = next(model.parameters()).device

    with torch.no_grad():

        for entry_idx in trange(entry_count):
            if embed is not None:
                generated = embed
            else:
                if tokens is None:
                    tokens = torch.tensor(tokenizer.encode(prompt))
                    tokens = tokens.unsqueeze(0).to(device)

                generated = model.gpt.transformer.wte(tokens)

            for i in range(entry_length):

                outputs = model.gpt(inputs_embeds=generated)
                logits = outputs.logits
                logits = logits[:, -1, :] / \
                    (temperature if temperature > 0 else 1.0)
                sorted_logits, sorted_indices = torch.sort(
                    logits, descending=True)
                cumulative_probs = torch.cumsum(
                    nnf.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
                    ..., :-1
                ].clone()
                sorted_indices_to_remove[..., 0] = 0

                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[:, indices_to_remove] = filter_value
                next_token = torch.argmax(logits, -1).unsqueeze(0)
                next_token_embed = model.gpt.transformer.wte(next_token)
                if tokens is None:
                    tokens = next_token
                else:
                    tokens = torch.cat((tokens, next_token), dim=1)
                generated = torch.cat((generated, next_token_embed), dim=1)
                if stop_token_index == next_token.item():
                    break

            output_list = list(tokens.squeeze().cpu().numpy())
            output_text = tokenizer.decode(output_list)
            generated_list.append(output_text)

    return generated_list[0]


is_gpu = False
device = CUDA(0) if is_gpu else "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")


def inference(img, model_name):
    prefix_length = 10

    model = ClipCaptionModel(prefix_length)

    if model_name == "COCO":
        model_path = coco_weight
    else:
        model_path = conceptual_weight
    model.load_state_dict(torch.load(model_path, map_location=CPU))
    model = model.eval()
    device = CUDA(0) if is_gpu else "cpu"
    model = model.to(device)

    use_beam_search = False
    image = io.imread(img.name)
    pil_image = PIL.Image.fromarray(image)
    image = preprocess(pil_image).unsqueeze(0).to(device)
    with torch.no_grad():
        prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
        prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
    if use_beam_search:
        generated_text_prefix = generate_beam(
            model, tokenizer, embed=prefix_embed)[0]
    else:
        generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)
    return generated_text_prefix


title = "ProjectX"
description = "Front-End Application used for ContentModX engine built using Python. To use it, simply upload your image, or click one of the examples to load them."
article = "<p style='text-align: center'><a href='https://github.com/suryabbrj/python_ml' target='_blank'>Github Repo</a></p>"

gr.Interface(
    inference,
    [gr.inputs.Image(type="filepath", label="Input"), gr.inputs.Radio(choices=[
        "Yes", "No"], type="value", default="COCO", label="would you like to constribute this result to the model training dataset (do this only if the image used is not a personal image, of you or anyone else you know.)")],
    gr.outputs.Textbox(label="Output"),
    title=title,
    description=description,
    article=article,
).launch(debug=True, share=True)