|
import argparse |
|
|
|
from torch.utils.data import DataLoader |
|
import torch |
|
import torch.nn as nn |
|
|
|
from src.bert import BERT |
|
from src.pretrainer import BERTTrainer, BERTFineTuneTrainer, BERTAttention |
|
from src.dataset import PretrainerDataset, TokenizerDataset |
|
from src.vocab import Vocab |
|
|
|
import time |
|
import os |
|
import tqdm |
|
import pickle |
|
|
|
def train(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('-workspace_name', type=str, default=None) |
|
parser.add_argument('-code', type=str, default=None, help="folder for pretraining outputs and logs") |
|
parser.add_argument('-finetune_task', type=str, default=None, help="folder inside finetuning") |
|
parser.add_argument("-attention", type=bool, default=False, help="analyse attention scores") |
|
parser.add_argument("-diff_test_folder", type=bool, default=False, help="use for different test folder") |
|
parser.add_argument("-embeddings", type=bool, default=False, help="get and analyse embeddings") |
|
parser.add_argument('-embeddings_file_name', type=str, default=None, help="file name of embeddings") |
|
parser.add_argument("-pretrain", type=bool, default=False, help="pretraining: true, or false") |
|
|
|
parser.add_argument("-max_mask", type=int, default=0.15, help="% of input tokens selected for masking") |
|
|
|
|
|
|
|
parser.add_argument("-vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab") |
|
|
|
parser.add_argument("-train_dataset_path", type=str, default="train.txt", help="fine tune train dataset for progress classifier") |
|
parser.add_argument("-val_dataset_path", type=str, default="val.txt", help="test set for evaluate fine tune train set") |
|
parser.add_argument("-test_dataset_path", type=str, default="test.txt", help="test set for evaluate fine tune train set") |
|
parser.add_argument("-num_labels", type=int, default=2, help="Number of labels") |
|
parser.add_argument("-train_label_path", type=str, default="train_label.txt", help="fine tune train dataset for progress classifier") |
|
parser.add_argument("-val_label_path", type=str, default="val_label.txt", help="test set for evaluate fine tune train set") |
|
parser.add_argument("-test_label_path", type=str, default="test_label.txt", help="test set for evaluate fine tune train set") |
|
|
|
parser.add_argument("-pretrained_bert_checkpoint", type=str, default=None, help="checkpoint of saved pretrained bert model") |
|
parser.add_argument('-check_epoch', type=int, default=None) |
|
|
|
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model") |
|
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers") |
|
parser.add_argument("-a", "--attn_heads", type=int, default=4, help="number of attention heads") |
|
parser.add_argument("-s", "--seq_len", type=int, default=50, help="maximum sequence length") |
|
|
|
parser.add_argument("-b", "--batch_size", type=int, default=500, help="number of batch_size") |
|
parser.add_argument("-e", "--epochs", type=int, default=50) |
|
|
|
parser.add_argument("-w", "--num_workers", type=int, default=4, help="dataloader worker size") |
|
|
|
|
|
parser.add_argument("--with_cuda", type=bool, default=True, help="training with CUDA: true, or false") |
|
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n") |
|
|
|
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids") |
|
|
|
|
|
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network") |
|
parser.add_argument("--lr", type=float, default=1e-05, help="learning rate of adam") |
|
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam") |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value") |
|
parser.add_argument("--adam_beta2", type=float, default=0.98, help="adam first beta value") |
|
|
|
parser.add_argument("-o", "--output_path", type=str, default="bert_trained.seq_encoder.model", help="ex)output/bert.model") |
|
|
|
|
|
args = parser.parse_args() |
|
for k,v in vars(args).items(): |
|
if 'path' in k: |
|
if v: |
|
if k == "output_path": |
|
if args.code: |
|
setattr(args, f"{k}", args.workspace_name+f"/output/{args.code}/"+v) |
|
elif args.finetune_task: |
|
setattr(args, f"{k}", args.workspace_name+f"/output/{args.finetune_task}/"+v) |
|
else: |
|
setattr(args, f"{k}", args.workspace_name+"/output/"+v) |
|
elif k != "vocab_path": |
|
if args.pretrain: |
|
setattr(args, f"{k}", args.workspace_name+"/pretraining/"+v) |
|
else: |
|
if args.code: |
|
setattr(args, f"{k}", args.workspace_name+f"/{args.code}/"+v) |
|
elif args.finetune_task: |
|
if args.diff_test_folder and "test" in k: |
|
setattr(args, f"{k}", args.workspace_name+f"/finetuning/"+v) |
|
else: |
|
setattr(args, f"{k}", args.workspace_name+f"/finetuning/{args.finetune_task}/"+v) |
|
else: |
|
setattr(args, f"{k}", args.workspace_name+"/finetuning/"+v) |
|
else: |
|
setattr(args, f"{k}", args.workspace_name+"/"+v) |
|
|
|
print(f"args.{k} : {getattr(args, f'{k}')}") |
|
|
|
print("Loading Vocab", args.vocab_path) |
|
vocab_obj = Vocab(args.vocab_path) |
|
vocab_obj.load_vocab() |
|
print("Vocab Size: ", len(vocab_obj.vocab)) |
|
|
|
if args.attention: |
|
print(f"Attention aggregate...... code: {args.code}, dataset: {args.finetune_task}") |
|
if args.code: |
|
new_folder = f"{args.workspace_name}/plots/{args.code}/" |
|
if not os.path.exists(new_folder): |
|
os.makedirs(new_folder) |
|
|
|
train_dataset = TokenizerDataset(args.train_dataset_path, None, vocab_obj, seq_len=args.seq_len) |
|
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) |
|
print("Load Pre-trained BERT model") |
|
cuda_condition = torch.cuda.is_available() and args.with_cuda |
|
device = torch.device("cuda:0" if cuda_condition else "cpu") |
|
bert = torch.load(args.pretrained_bert_checkpoint, map_location=device) |
|
trainer = BERTAttention(bert, vocab_obj, train_dataloader = train_data_loader, workspace_name = args.workspace_name, code=args.code, finetune_task = args.finetune_task) |
|
trainer.getAttention() |
|
|
|
elif args.embeddings: |
|
print("Get embeddings... and cluster... ") |
|
train_dataset = TokenizerDataset(args.test_dataset_path, None, vocab_obj, seq_len=args.seq_len) |
|
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) |
|
print("Load Pre-trained BERT model") |
|
cuda_condition = torch.cuda.is_available() and args.with_cuda |
|
device = torch.device("cuda:0" if cuda_condition else "cpu") |
|
bert = torch.load(args.pretrained_bert_checkpoint).to(device) |
|
available_gpus = list(range(torch.cuda.device_count())) |
|
if torch.cuda.device_count() > 1: |
|
print("Using %d GPUS for BERT" % torch.cuda.device_count()) |
|
bert = nn.DataParallel(bert, device_ids=available_gpus) |
|
|
|
data_iter = tqdm.tqdm(enumerate(train_data_loader), |
|
desc="Model: %s" % (args.pretrained_bert_checkpoint.split("/")[-1]), |
|
total=len(train_data_loader), bar_format="{l_bar}{r_bar}") |
|
all_embeddings = [] |
|
for i, data in data_iter: |
|
data = {key: value.to(device) for key, value in data.items()} |
|
embedding = bert(data["input"], data["segment_label"]) |
|
|
|
embeddings = [h for h in embedding[:,0].cpu().detach().numpy()] |
|
all_embeddings.extend(embeddings) |
|
|
|
new_emb_folder = f"{args.workspace_name}/embeddings" |
|
if not os.path.exists(new_emb_folder): |
|
os.makedirs(new_emb_folder) |
|
pickle.dump(all_embeddings, open(f"{new_emb_folder}/{args.embeddings_file_name}.pkl", "wb")) |
|
else: |
|
if args.pretrain: |
|
print("Pre-training......") |
|
print("Loading Pretraining Train Dataset", args.train_dataset_path) |
|
print(f"Workspace: {args.workspace_name}") |
|
pretrain_dataset = PretrainerDataset(args.train_dataset_path, vocab_obj, seq_len=args.seq_len, max_mask = args.max_mask) |
|
|
|
print("Loading Pretraining Validation Dataset", args.val_dataset_path) |
|
pretrain_valid_dataset = PretrainerDataset(args.val_dataset_path, vocab_obj, seq_len=args.seq_len, max_mask = args.max_mask) \ |
|
if args.val_dataset_path is not None else None |
|
|
|
print("Loading Pretraining Test Dataset", args.test_dataset_path) |
|
pretrain_test_dataset = PretrainerDataset(args.test_dataset_path, vocab_obj, seq_len=args.seq_len, max_mask = args.max_mask) \ |
|
if args.test_dataset_path is not None else None |
|
|
|
print("Creating Dataloader") |
|
pretrain_data_loader = DataLoader(pretrain_dataset, batch_size=args.batch_size, num_workers=args.num_workers) |
|
pretrain_val_data_loader = DataLoader(pretrain_valid_dataset, batch_size=args.batch_size, num_workers=args.num_workers)\ |
|
if pretrain_valid_dataset is not None else None |
|
pretrain_test_data_loader = DataLoader(pretrain_test_dataset, batch_size=args.batch_size, num_workers=args.num_workers)\ |
|
if pretrain_test_dataset is not None else None |
|
|
|
print("Building BERT model") |
|
bert = BERT(len(vocab_obj.vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads, dropout=args.dropout) |
|
|
|
if args.pretrained_bert_checkpoint: |
|
print(f"BERT model : {args.pretrained_bert_checkpoint}") |
|
bert = torch.load(args.pretrained_bert_checkpoint) |
|
|
|
new_log_folder = f"{args.workspace_name}/logs" |
|
new_output_folder = f"{args.workspace_name}/output" |
|
if args.code: |
|
new_log_folder = f"{args.workspace_name}/logs/{args.code}" |
|
new_output_folder = f"{args.workspace_name}/output/{args.code}" |
|
|
|
if not os.path.exists(new_log_folder): |
|
os.makedirs(new_log_folder) |
|
if not os.path.exists(new_output_folder): |
|
os.makedirs(new_output_folder) |
|
|
|
print(f"Creating BERT Trainer .... masking: True, max_mask: {args.max_mask}") |
|
trainer = BERTTrainer(bert, len(vocab_obj.vocab), train_dataloader=pretrain_data_loader, |
|
val_dataloader=pretrain_val_data_loader, test_dataloader=pretrain_test_data_loader, |
|
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, |
|
with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, |
|
log_folder_path=new_log_folder) |
|
|
|
start_time = time.time() |
|
print(f'Pretraining Starts, Time: {time.strftime("%D %T", time.localtime(start_time))}') |
|
|
|
repoch = range(args.check_epoch, args.epochs) if args.check_epoch else range(args.epochs) |
|
counter = 0 |
|
patience = 20 |
|
for epoch in repoch: |
|
print(f'Training Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}') |
|
trainer.train(epoch) |
|
print(f'Training Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n') |
|
|
|
if pretrain_val_data_loader is not None: |
|
print(f'Validation Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}') |
|
trainer.val(epoch) |
|
print(f'Validation Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n') |
|
|
|
if trainer.save_model: |
|
trainer.save(epoch, args.output_path) |
|
counter = 0 |
|
if pretrain_test_data_loader is not None: |
|
print(f'Test Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}') |
|
trainer.test(epoch) |
|
print(f'Test Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n') |
|
else: |
|
counter +=1 |
|
if counter >= patience: |
|
print(f"Early stopping at epoch {epoch}") |
|
break |
|
|
|
end_time = time.time() |
|
print("Time Taken to pretrain model = ", end_time - start_time) |
|
print(f'Pretraining Ends, Time: {time.strftime("%D %T", time.localtime(end_time))}') |
|
else: |
|
print("Fine Tuning......") |
|
print("Loading Train Dataset", args.train_dataset_path) |
|
train_dataset = TokenizerDataset(args.train_dataset_path, args.train_label_path, vocab_obj, seq_len=args.seq_len) |
|
|
|
|
|
|
|
|
|
|
|
print("Loading Test Dataset", args.test_dataset_path) |
|
test_dataset = TokenizerDataset(args.test_dataset_path, args.test_label_path, vocab_obj, seq_len=args.seq_len) \ |
|
if args.test_dataset_path is not None else None |
|
|
|
print("Creating Dataloader...") |
|
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) |
|
|
|
|
|
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ |
|
if test_dataset is not None else None |
|
|
|
print("Load Pre-trained BERT model") |
|
|
|
cuda_condition = torch.cuda.is_available() and args.with_cuda |
|
device = torch.device("cuda:0" if cuda_condition else "cpu") |
|
bert = torch.load(args.pretrained_bert_checkpoint, map_location=device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_log_folder = f"{args.workspace_name}/logs" |
|
new_output_folder = f"{args.workspace_name}/output" |
|
if args.finetune_task: |
|
new_log_folder = f"{args.workspace_name}/logs/{args.finetune_task}" |
|
new_output_folder = f"{args.workspace_name}/output/{args.finetune_task}" |
|
|
|
if not os.path.exists(new_log_folder): |
|
os.makedirs(new_log_folder) |
|
if not os.path.exists(new_output_folder): |
|
os.makedirs(new_output_folder) |
|
|
|
print("Creating BERT Fine Tune Trainer") |
|
trainer = BERTFineTuneTrainer(bert, len(vocab_obj.vocab), |
|
train_dataloader=train_data_loader, test_dataloader=test_data_loader, |
|
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, |
|
with_cuda=args.with_cuda, cuda_devices = args.cuda_devices, log_freq=args.log_freq, |
|
workspace_name = args.workspace_name, num_labels=args.num_labels, log_folder_path=new_log_folder) |
|
|
|
print("Fine-tune training Start....") |
|
start_time = time.time() |
|
repoch = range(args.check_epoch, args.epochs) if args.check_epoch else range(args.epochs) |
|
counter = 0 |
|
patience = 10 |
|
for epoch in repoch: |
|
print(f'Training Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}') |
|
trainer.train(epoch) |
|
print(f'Training Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n') |
|
|
|
if test_data_loader is not None: |
|
print(f'Test Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}') |
|
trainer.test(epoch) |
|
|
|
print(f'Test Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n') |
|
|
|
|
|
|
|
|
|
|
|
|
|
if trainer.save_model: |
|
trainer.save(epoch, args.output_path) |
|
counter = 0 |
|
else: |
|
counter +=1 |
|
if counter >= patience: |
|
print(f"Early stopping at epoch {epoch}") |
|
break |
|
|
|
end_time = time.time() |
|
print("Time Taken to fine-tune model = ", end_time - start_time) |
|
print(f'Pretraining Ends, Time: {time.strftime("%D %T", time.localtime(end_time))}') |
|
|
|
|
|
if __name__ == "__main__": |
|
train() |