suryadev1 commited on
Commit
0328058
1 Parent(s): 91de1da
Files changed (6) hide show
  1. app.py +0 -93
  2. result.txt +0 -8
  3. roc_data.pkl +0 -3
  4. train.txt +0 -0
  5. train_info.txt +0 -0
  6. train_label.txt +0 -0
app.py CHANGED
@@ -1,96 +1,3 @@
1
-
2
-
3
- # import gradio as gr
4
- # from huggingface_hub import hf_hub_download
5
- # import pickle
6
- # import gradio as gr
7
- # import numpy as np
8
- # import subprocess
9
- # import shutil
10
- # import matplotlib.pyplot as plt
11
- # from sklearn.metrics import roc_curve, auc
12
- # # Define the function to process the input file and model selection
13
- # def process_file(file,label, model_name):
14
- # with open(file.name, 'r') as f:
15
- # content = f.read()
16
- # saved_test_dataset = "train.txt"
17
- # saved_test_label = "train_label.txt"
18
-
19
- # # Save the uploaded file content to a specified location
20
- # shutil.copyfile(file.name, saved_test_dataset)
21
- # shutil.copyfile(label.name, saved_test_label)
22
- # # For demonstration purposes, we'll just return the content with the selected model name
23
- # if(model_name=="FS"):
24
- # checkpoint="ratio_proportion_change3/output/FS/bert_fine_tuned.model.ep32"
25
- # elif(model_name=="IS"):
26
- # checkpoint="ratio_proportion_change3/output/IS/bert_fine_tuned.model.ep14"
27
- # elif(model_name=="CORRECTNESS"):
28
- # checkpoint="ratio_proportion_change3/output/correctness/bert_fine_tuned.model.ep48"
29
- # elif(model_name=="EFFECTIVENESS"):
30
- # checkpoint="ratio_proportion_change3/output/effectiveness/bert_fine_tuned.model.ep28"
31
- # else:
32
- # checkpoint=None
33
-
34
- # print(checkpoint)
35
- # # subprocess.run(["python", "src/test_saved_model.py",
36
- # # "--finetuned_bert_checkpoint",checkpoint
37
- # # ])
38
- # result = {}
39
- # with open("result.txt", 'r') as file:
40
- # for line in file:
41
- # key, value = line.strip().split(': ', 1)
42
- # # print(type(key))
43
- # if key=='epoch':
44
- # result[key]=value
45
- # else:
46
- # result[key]=float(value)
47
- # # Create a plot
48
- # with open("roc_data.pkl", "rb") as f:
49
- # fpr, tpr, _ = pickle.load(f)
50
-
51
-
52
-
53
- # roc_auc = auc(fpr, tpr)
54
- # fig, ax = plt.subplots()
55
- # ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
56
- # ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
57
- # ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'ROC Curve: {model_name}')
58
- # ax.legend(loc="lower right")
59
- # ax.grid()
60
-
61
- # # Save plot to a file
62
- # plot_path = "plot.png"
63
- # fig.savefig(plot_path)
64
- # plt.close(fig)
65
-
66
- # # Prepare text output
67
- # text_output = f"Model: {model_name}\nResult:\n{result}"
68
-
69
- # return text_output,plot_path
70
-
71
- # # List of models for the dropdown menu
72
- # models = ["FS", "IS", "CORRECTNESS","EFFECTIVENESS"]
73
-
74
- # # Create the Gradio interface
75
- # with gr.Blocks() as demo:
76
- # gr.Markdown("# ASTRA")
77
- # gr.Markdown("Upload a .txt file and select a model from the dropdown menu.")
78
-
79
- # with gr.Row():
80
- # file_input = gr.File(label="Upload a .txt file", file_types=['.txt'])
81
- # label_input = gr.File(label="Upload a .txt file", file_types=['.txt'])
82
- # model_dropdown = gr.Dropdown(choices=models, label="Select a model")
83
-
84
- # with gr.Row():
85
- # output_text = gr.Textbox(label="Output Text")
86
- # output_image = gr.Image(label="Output Plot")
87
-
88
- # btn = gr.Button("Submit")
89
- # btn.click(fn=process_file, inputs=[file_input,label_input, model_dropdown], outputs=[output_text,output_image])
90
-
91
- # # Launch the app
92
- # demo.launch()
93
-
94
  import gradio as gr
95
  from huggingface_hub import hf_hub_download
96
  import pickle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import hf_hub_download
3
  import pickle
result.txt DELETED
@@ -1,8 +0,0 @@
1
- epoch: EP0_test
2
- avg_loss: 0.8247231508152465
3
- total_acc: 50.0
4
- precisions: 0.25
5
- recalls: 0.5
6
- f1_scores: 0.3333333333333333
7
- time_taken_from_start: 77.90863966941833
8
- auc_score: 0.5
 
 
 
 
 
 
 
 
 
roc_data.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b84bcb95e30a1c23f399643fc8dd20b57d7a849faf2670a3df9b7d0f9285f34
3
- size 257
 
 
 
 
train.txt DELETED
The diff for this file is too large to render. See raw diff
 
train_info.txt DELETED
The diff for this file is too large to render. See raw diff
 
train_label.txt DELETED
The diff for this file is too large to render. See raw diff